lr_scheduler.py 56.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import numpy
import warnings
from paddle import Tensor

__all__ = [
    'NoamLR', 'PiecewiseLR', 'NaturalExpLR', 'InverseTimeLR', 'PolynomialLR',
    'LinearLrWarmup', 'ExponentialLR', 'MultiStepLR', 'StepLR', 'LambdaLR',
    'ReduceLROnPlateau', 'CosineAnnealingLR'
]


class _LRScheduler(object):
    """LRScheduler Base class.

    Define the common interface of an LRScheduler.
    User can 'form paddle.optimizer.lr_scheduler import _LRScheduler'
    And inherit from it to have a custom implementation of get_lr().
    """

    def __init__(self, learning_rate=0.1, last_epoch=-1, verbose=False):
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
                "The type of learning rate must be float, but received {}".
                format(type(learning_rate)))
        self.base_lr = float(learning_rate)
        self.last_lr = float(learning_rate)
        self.last_epoch = last_epoch
        self.verbose = verbose
        self._var_name = None

        self.step()

    def __call__(self):
        """ 
        Return last computed learning rate on current epoch.
        """
        return self.last_lr

    def step(self, epoch=None):
        """
        'step' should be called after 'minimize' . It will update the learning rate in optimizer according to 'epoch'.  
        The new learning rate will take effect on next epoch.

        Args:
            epoch (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.

        Returns:
            None
        
        Examples:
            Please refer to the example of current _LRScheduler. 
        """
        if epoch is None:
            self.last_epoch += 1
            self.last_lr = self.get_lr()
        else:
            self.last_epoch = epoch
            if hasattr(self, "_get_closed_form_lr"):
                self.last_lr = self._get_closed_form_lr()
            else:
                self.last_lr = self.get_lr()

        if self.verbose:
            print('Epoch {}: {} set learning rate to {}.'.format(
                self.last_epoch, self.__class__.__name__, self.last_lr))

    def state_dict(self):
        """
        Returns the state of the scheduler as a :class:`dict`.

        It is a subset of self.__dict__ .
        """
        self._state_keys()
        state_dict = {}
        for key in self.keys:
            if key not in self.__dict__:
                continue
            value = self.__dict__[key]
            if isinstance(value, Tensor):
                assert value.shape == [
                    1
                ], "shape of Tensor in state_dict must be [1] {}".format(
                    value.shape)
                value = value.numpy()[0]
            state_dict[key] = value

        return state_dict

    # For those subclass who overload _LRScheduler, "last_epoch, last_lr" will be saved by default.
    # (Note): you can change it for your subclass.
    def _state_keys(self):
        """
        set the keys in self.__dict__ that are needed to be saved.
        """
        self.keys = ['last_epoch', 'last_lr']

112
    def set_state_dict(self, state_dict):
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
        """
        Loads the schedulers state.
        """
        self._state_keys()
        for key in self.keys:
            if key in state_dict:
                self.__dict__[key] = state_dict[key]
            else:
                raise RuntimeError(
                    "Please check whether state_dict is correct for optimizer. Can't find [ {} ] in state_dict".
                    format(key))
        if len(state_dict) > len(self.keys):
            warnings.warn(
                "There are some unused values in state_dict. Maybe the optimizer have different 'LearningRateDecay' when invoking state_dict and set_dict"
            )

129 130
    # alias for set_state_dict
    set_dict = set_state_dict
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    def get_lr(self):
        # calculate by python float
        raise NotImplementedError


class NoamLR(_LRScheduler):
    """

    Applies Noam Lear to the initial learning rate. 

    The algorithm can be described as following.

    .. math::

        new\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(epoch^{-0.5}, epoch * warmup\_steps^{-1.5})

    Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_ 


    Args:
        d$_{model}$(int): The dimensionality of input and output feature vector of model. It is a python int number.
        warmup_steps(int): The number of warmup steps. A super parameter. It is a python int number
        learning_rate (float): The initial learning rate. It is a python float number. Default: 1.0.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
156
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
157 158 159 160 161 162 163 164 165 166 167 168 169 170

    Returns:
        ``NoamLR`` instance to schedule learning rate.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dygraph mode
            paddle.disable_static()
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
171
            scheduler = paddle.optimizer.lr_scheduler.NoamLR(d_model=0.01, warmup_steps=100, verbose=True)
172 173 174 175 176 177
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
            for epoch in range(20):
                for batch_id in range(2):
                    x = paddle.to_tensor(x)
                    out = linear(x)
                    loss = paddle.reduce_mean(out)
178
                    loss.backward()
179 180 181 182 183 184 185 186 187
                    sgd.minimize(loss)
                    linear.clear_gradients()
                scheduler.step()

            # train on static mode
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
188 189
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
190 191
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
192
                scheduler = paddle.optimizer.lr_scheduler.NoamLR(d_model=0.01, warmup_steps=100, verbose=True)
193 194 195 196 197 198 199 200 201 202 203 204 205
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
                for batch_id in range(2):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
206
                        fetch_list=loss.name)
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
                scheduler.step()

    """

    def __init__(self,
                 d_model,
                 warmup_steps,
                 learning_rate=1.0,
                 last_epoch=-1,
                 verbose=False):
        self.d_model = d_model
        self.warmup_steps = warmup_steps
        super(NoamLR, self).__init__(learning_rate, last_epoch, verbose)

    def get_lr(self):
        if self.last_epoch == 0:
            a = 1
        else:
            a = self.last_epoch**-0.5
        b = self.warmup_steps**-1.5 * self.last_epoch
        return self.base_lr * (self.d_model**-0.5) * min(a, b)


class PiecewiseLR(_LRScheduler):
    """

    Piecewise learning rate scheduler.

    The algorithm can be described as the code below:

    .. code-block:: text

        boundaries = [100, 200]
        values = [1.0, 0.5, 0.1]
        if epoch < 100:
            learning_rate = 1.0
        elif 100 <= global_step < 200:
            learning_rate = 0.5
        else:
            learning_rate = 0.1

    Args:
        boundaries(list): A list of steps numbers. The type of element in the list is python int. 
        values(list): A list of learning rate values that will be picked during different epoch boundaries. 
            The type of element in the list is python float.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
253
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

    Returns:
        ``PiecewiseLR`` instance to schedule learning rate.

    Examples:
        
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dygraph mode
            paddle.disable_static()
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
269
            scheduler = paddle.optimizer.lr_scheduler.PiecewiseLR(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
270 271 272 273 274 275
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
            for epoch in range(20):
                for batch_id in range(2):
                    x = paddle.to_tensor(x)
                    out = linear(x)
                    loss = paddle.reduce_mean(out)
276
                    loss.backward()
277 278 279 280 281 282 283 284 285
                    sgd.minimize(loss)
                    linear.clear_gradients()
                scheduler.step()

            # train on static mode
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
286 287
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
288 289
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
290
                scheduler = paddle.optimizer.lr_scheduler.PiecewiseLR(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
291 292 293 294 295 296 297 298 299 300 301 302 303
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
                for batch_id in range(2):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
304
                        fetch_list=loss.name)
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
                scheduler.step()
    """

    def __init__(self, boundaries, values, last_epoch=-1, verbose=False):
        self.boundaries = boundaries
        self.values = values
        super(PiecewiseLR, self).__init__(
            last_epoch=last_epoch, verbose=verbose)

    def get_lr(self):

        for i in range(len(self.boundaries)):
            if self.last_epoch < self.boundaries[i]:
                return self.values[i]
        return self.values[len(self.values) - 1]


class NaturalExpLR(_LRScheduler):
    """

    Applies natural exponential decay to the initial learning rate.
    
    The algorithm can be described as following:

    .. math::

        new\_learning\_rate = learning\_rate * e^{- gama * epoch}

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        gamma (float, optional): A Ratio to update the learning rate. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
337
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

    Returns:
        ``NaturalExpLR`` instance to schedule learning rate.

    Examples:
        
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dygraph mode
            paddle.disable_static()
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
353
            scheduler = paddle.optimizer.lr_scheduler.NaturalExpLR(learning_rate=0.5, gamma=0.1, verbose=True)
354 355 356 357 358 359
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
            for epoch in range(20):
                for batch_id in range(2):
                    x = paddle.to_tensor(x)
                    out = linear(x)
                    loss = paddle.reduce_mean(out)
360
                    loss.backward()
361 362 363 364 365 366 367 368 369
                    sgd.minimize(loss)
                    linear.clear_gradients()
                scheduler.step()

            # train on static mode
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
370 371
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
372 373
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
374
                scheduler = paddle.optimizer.lr_scheduler.NaturalExpLR(learning_rate=0.5, gamma=0.1, verbose=True)
375 376 377 378 379 380 381 382 383 384 385 386 387
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
                for batch_id in range(2):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
388
                        fetch_list=loss.name)
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
                scheduler.step()
    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
        self.gamma = gamma
        super(NaturalExpLR, self).__init__(learning_rate, last_epoch, verbose)

    def get_lr(self):
        return self.base_lr * math.exp(-1 * self.gamma * self.last_epoch)


class InverseTimeLR(_LRScheduler):
    """

    Applies inverse time decay to the initial learning rate.

    The algorithm can be described as following:

    .. math::

        new\_learning\_rate = \\frac{learning\_rate}{1 + gamma * epoch}

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . 
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
416
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

    Returns:
        ``InverseTimeLR`` instance to schedule learning rate.

    Examples:
        
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dygraph mode
            paddle.disable_static()
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
432
            scheduler = paddle.optimizer.lr_scheduler.InverseTimeLR(learning_rate=0.5, gamma=0.1, verbose=True)
433 434 435 436 437 438
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
            for epoch in range(20):
                for batch_id in range(2):
                    x = paddle.to_tensor(x)
                    out = linear(x)
                    loss = paddle.reduce_mean(out)
439
                    loss.backward()
440 441 442 443 444 445 446 447 448
                    sgd.minimize(loss)
                    linear.clear_gradients()
                scheduler.step()

            # train on static mode
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
449 450
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
451 452
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
453
                scheduler = paddle.optimizer.lr_scheduler.InverseTimeLR(learning_rate=0.5, gamma=0.1, verbose=True)
454 455 456 457 458 459 460 461 462 463 464 465 466
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
                for batch_id in range(2):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
467
                        fetch_list=loss.name)
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
                scheduler.step()

    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
        self.gamma = gamma
        super(InverseTimeLR, self).__init__(learning_rate, last_epoch, verbose)

    def get_lr(self):
        return self.base_lr / (1 + self.gamma * self.last_epoch)


class PolynomialLR(_LRScheduler):
    """

    Applies polynomial decay to the initial learning rate.

    The algorithm can be described as following.

    If cycle is set to True, then:

    .. math::

        decay\_steps & = decay\_steps * math.ceil(\\frac{epoch}{decay\_steps}) 

        new\_learning\_rate & = (learning\_rate-end\_lr)*(1-\\frac{epoch}{decay\_steps})^{power}+end\_lr

    If cycle is set to False, then:

    .. math::

        epoch & = min(epoch, decay\_steps) 

        new\_learning\_rate & = (learning\_rate-end\_lr)*(1-\\frac{epoch}{decay\_steps})^{power}+end\_lr


    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
        power(float, optional): Power of polynomial. Default: 1.0.
        cycle(bool, optional): Whether the learning rate rises again. If True, then the learning rate will rise when it decrease 
            to ``end_lr`` .  If False, the learning rate is monotone decreasing. Default: False.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
512
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

    Returns:
        ``PolynomialLR`` instance to schedule learning rate.

    Examples:
        
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dygraph mode
            paddle.disable_static()
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
528
            scheduler = paddle.optimizer.lr_scheduler.PolynomialLR(learning_rate=0.5, decay_steps=20, verbose=True)
529 530 531 532 533 534
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
            for epoch in range(20):
                for batch_id in range(2):
                    x = paddle.to_tensor(x)
                    out = linear(x)
                    loss = paddle.reduce_mean(out)
535
                    loss.backward()
536 537 538 539
                    sgd.minimize(loss)
                    linear.clear_gradients()
                scheduler.step()

540
            # train on static mode
541 542 543 544
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
545 546
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
547 548
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
549
                scheduler = paddle.optimizer.lr_scheduler.PolynomialLR(learning_rate=0.5, decay_steps=20, verbose=True)
550 551 552 553 554 555 556 557 558 559 560 561 562
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
                for batch_id in range(2):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
563
                        fetch_list=loss.name)
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
                scheduler.step()
    """

    def __init__(self,
                 learning_rate,
                 decay_steps,
                 end_lr=0.0001,
                 power=1.0,
                 cycle=False,
                 last_epoch=-1,
                 verbose=False):
        self.decay_steps = decay_steps
        self.end_lr = end_lr
        self.power = power
        self.cycle = cycle
        super(PolynomialLR, self).__init__(learning_rate, last_epoch, verbose)

    def get_lr(self):
        tmp_epoch_num = self.last_epoch
        tmp_decay_steps = self.decay_steps
        if self.cycle:
            div_res = math.ceil(
                float(self.last_epoch) / float(self.decay_steps))

            if self.last_epoch == 0:
                div_res = 1
            tmp_decay_steps = self.decay_steps * div_res
        else:
            tmp_epoch_num = min(self.last_epoch, self.decay_steps)

        return (self.base_lr - self.end_lr) * (
            (1 - float(tmp_epoch_num) / float(tmp_decay_steps)
             )**self.power) + self.end_lr


class LinearLrWarmup(_LRScheduler):
    """

    Linear learning rate warm up strategy. Update the learning rate preliminarily before the normal learning rate scheduler.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
    
    When epoch < warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            lr = start_lr + (end_lr - start_lr) * (epoch / warmup_steps)
    
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
    
    When epoch >= warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            lr = learning_rate
    
    where lr is float or any subclass of ``_LRScheduler`` .

    Args:
        learning_rate (float|_LRScheduler): The learning rate after warm-up. It is a python float number or any subclass of ``_LRScheduler`` .
        warmup_steps (int): total steps of warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
627
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

    Returns:
        ``LinearLrWarmup`` instance to schedule learning rate.

    Examples:
        
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dygraph mode
            paddle.disable_static()
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.LinearLrWarmup(
                    learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
            for epoch in range(20):
                for batch_id in range(2):
                    x = paddle.to_tensor(x)
                    out = linear(x)
                    loss = paddle.reduce_mean(out)
651
                    loss.backward()
652 653 654 655
                    sgd.minimize(loss)
                    linear.clear_gradients()
                scheduler.step()

656
            # train on static mode
657 658 659 660
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
661 662
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
663 664
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
665
                scheduler = paddle.optimizer.lr_scheduler.LinearLrWarmup(
666 667 668 669 670 671 672 673 674 675 676 677 678 679
                    learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
                for batch_id in range(2):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
680
                        fetch_list=loss.name)
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
                scheduler.step()      
    """

    def __init__(self,
                 learning_rate,
                 warmup_steps,
                 start_lr,
                 end_lr,
                 last_epoch=-1,
                 verbose=False):
        type_check = isinstance(learning_rate, float) or isinstance(
            learning_rate, int) or isinstance(learning_rate, _LRScheduler)
        if not type_check:
            raise TypeError(
                "the type of learning_rate should be [int, float or _LRScheduler], the current type is {}".
                format(learning_rate))
        self.learning_rate = learning_rate
        self.warmup_steps = warmup_steps
        self.start_lr = start_lr
        self.end_lr = end_lr
        assert end_lr > start_lr, "end_lr {} must be greater than start_lr {}".format(
            end_lr, start_lr)
        super(LinearLrWarmup, self).__init__(start_lr, last_epoch, verbose)

    def get_lr(self):
        if self.last_epoch < self.warmup_steps:
            return (self.end_lr - self.start_lr) * float(
                self.last_epoch) / float(self.warmup_steps) + self.start_lr
        else:
            if isinstance(self.learning_rate, _LRScheduler):
                self.learning_rate.step()
                return self.learning_rate()

            return self.learning_rate


class ExponentialLR(_LRScheduler):
    """

    Update learning rate by 'gamma' each epoch.

    The algorithm can be described as following.
    
    .. math::

        new\_learning\_rate = last\_learning\_rate * gamma

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
730 731
        gamma (float): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . 
            It should be less than 1.0.
732
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
733
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

    Returns:
        ``ExponentialLR`` instance to schedule learning rate.

    Examples:
        
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dygraph mode
            paddle.disable_static()
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
749
            scheduler = paddle.optimizer.lr_scheduler.ExponentialLR(learning_rate=0.5, gamma=0.9, verbose=True)
750 751 752 753 754 755
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
            for epoch in range(20):
                for batch_id in range(2):
                    x = paddle.to_tensor(x)
                    out = linear(x)
                    loss = paddle.reduce_mean(out)
756
                    loss.backward()
757 758 759 760
                    sgd.minimize(loss)
                    linear.clear_gradients()
                scheduler.step()

761
            # train on static mode
762 763 764 765
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
766 767
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
768 769
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
770
                scheduler = paddle.optimizer.lr_scheduler.ExponentialLR(learning_rate=0.5, gamma=0.9, verbose=True)
771 772 773 774 775 776 777 778 779 780 781 782 783
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
                for batch_id in range(2):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
784
                        fetch_list=loss.name)
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
                scheduler.step()
    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
        self.gamma = gamma
        super(ExponentialLR, self).__init__(learning_rate, last_epoch, verbose)

    def get_lr(self):
        return self.base_lr * (self.gamma**self.last_epoch)


class MultiStepLR(_LRScheduler):
    """
    Update the learning rate by ``gama`` once ``epoch`` reaches one of the milestones.

    The algorithm can be described as the code below. 

    .. code-block:: text

        learning_rate = 0.5
        milestones = [30, 50]
        gamma = 0.1
        if epoch < 30:
            learning_rate = 0.5
        elif epoch < 50:
            learning_rate = 0.05
        else:
            learning_rate = 0.005

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . 
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
820
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
        

    Returns:
        ``MultiStepLR`` instance to schedule learning rate.

    Examples:
        
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dygraph mode
            paddle.disable_static()
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
837
            scheduler = paddle.optimizer.lr_scheduler.MultiStepLR(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
838 839 840 841 842 843
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
            for epoch in range(20):
                for batch_id in range(2):
                    x = paddle.to_tensor(x)
                    out = linear(x)
                    loss = paddle.reduce_mean(out)
844
                    loss.backward()
845 846 847 848
                    sgd.minimize(loss)
                    linear.clear_gradients()
                scheduler.step()

849
            # train on static mode
850 851 852 853
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
854 855
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
856 857
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
858
                scheduler = paddle.optimizer.lr_scheduler.MultiStepLR(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
859 860 861 862 863 864 865 866 867 868 869 870 871
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
                for batch_id in range(2):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
872
                        fetch_list=loss.name)
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
                scheduler.step()
    """

    def __init__(self,
                 learning_rate,
                 milestones,
                 gamma=0.1,
                 last_epoch=-1,
                 verbose=False):
        if not isinstance(milestones, (tuple, list)):
            raise TypeError(
                "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
                % type(milestones))

        if not all([
                milestones[i] < milestones[i + 1]
                for i in range(len(milestones) - 1)
        ]):
            raise ValueError('The elements of milestones must be incremented')
        if gamma >= 1.0:
            raise ValueError('gamma should be < 1.0.')

        self.milestones = milestones
        self.gamma = gamma
        super(MultiStepLR, self).__init__(learning_rate, last_epoch, verbose)

    def get_lr(self):
        for i in range(len(self.milestones)):
            if self.last_epoch < self.milestones[i]:
                return self.base_lr * (self.gamma**i)
        return self.base_lr * (self.gamma**len(self.milestones))


class StepLR(_LRScheduler):
    """
    Update the learning rate of ``optimizer`` by ``gamma`` every ``step_size`` number of epoch.

    The algorithm can be described as the code below. 

    .. code-block:: text

        learning_rate = 0.5
        step_size = 30
        gamma = 0.1

        learning_rate = 0.5     if epoch < 30
        learning_rate = 0.05    if 30 <= epoch < 60
        learning_rate = 0.005   if 60 <= epoch < 90
        ...

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        step_size (int): the interval to update.
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . 
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
929
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945

    Returns:
        ``StepLR`` instance to schedule learning rate.


    Examples:
        
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dygraph mode
            paddle.disable_static()
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
946
            scheduler = paddle.optimizer.lr_scheduler.StepLR(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
947 948 949 950 951 952
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
            for epoch in range(20):
                for batch_id in range(2):
                    x = paddle.to_tensor(x)
                    out = linear(x)
                    loss = paddle.reduce_mean(out)
953
                    loss.backward()
954 955 956 957
                    sgd.minimize(loss)
                    linear.clear_gradients()
                scheduler.step()

958
            # train on static mode
959 960 961 962
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
963 964
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
965 966
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
967
                scheduler = paddle.optimizer.lr_scheduler.StepLR(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
968 969 970 971 972 973 974 975 976 977 978 979 980
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
                for batch_id in range(2):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
981
                        fetch_list=loss.name)
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
                scheduler.step()
    """

    def __init__(self,
                 learning_rate,
                 step_size,
                 gamma=0.1,
                 last_epoch=-1,
                 verbose=False):
        if not isinstance(step_size, int):
            raise TypeError(
                "The type of 'step_size' must be 'int', but received %s." %
                type(step_size))
        if gamma >= 1.0:
            raise ValueError('gamma should be < 1.0.')

        self.step_size = step_size
        self.gamma = gamma
        super(StepLR, self).__init__(learning_rate, last_epoch, verbose)

    def get_lr(self):
        i = self.last_epoch // self.step_size
        return self.base_lr * (self.gamma**i)


class LambdaLR(_LRScheduler):
    """
    Sets the learning rate of ``optimizer`` by function ``lr_lambda`` . ``lr_lambda`` is funciton which receives ``epoch`` .

    The algorithm can be described as the code below. 

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95 ** epoch

        learning_rate = 0.5        # epoch 0
        learning_rate = 0.475      # epoch 1
        learning_rate = 0.45125    # epoch 2

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        lr_lambda (function): A function which computes a factor by ``epoch`` , and then multiply the initial learning rate by this factor.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1026
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    
    Returns:
        ``LambdaLR`` instance to schedule learning rate.

    Examples:
        
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dygraph mode
            paddle.disable_static()
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
1042
            scheduler = paddle.optimizer.lr_scheduler.LambdaLR(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
1043 1044 1045 1046 1047 1048
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
            for epoch in range(20):
                for batch_id in range(2):
                    x = paddle.to_tensor(x)
                    out = linear(x)
                    loss = paddle.reduce_mean(out)
1049
                    loss.backward()
1050 1051 1052 1053
                    sgd.minimize(loss)
                    linear.clear_gradients()
                scheduler.step()

1054
            # train on static mode
1055 1056 1057 1058
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1059 1060
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1061 1062
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1063
                scheduler = paddle.optimizer.lr_scheduler.LambdaLR(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
                for batch_id in range(2):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1077
                        fetch_list=loss.name)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
                scheduler.step()

    """

    def __init__(self, learning_rate, lr_lambda, last_epoch=-1, verbose=False):
        if not callable(lr_lambda):
            raise TypeError(
                "The type of 'lr_lambda' in 'LambdaLR' must be 'function', but received %s."
                % type(lr_lambda))

        self.lr_lambda = lr_lambda
        super(LambdaLR, self).__init__(learning_rate, last_epoch, verbose)

    def get_lr(self):
        return self.base_lr * self.lr_lambda(self.last_epoch)


class ReduceLROnPlateau(_LRScheduler):
    """
    Reduce learning rate when ``metrics`` has stopped descending. Models often benefit from reducing the learning rate 
    by 2 to 10 times once model performance has no longer improvement.

    The ``metrics`` is the one which has been pass into ``step`` , it must be 1-D Tensor with shape [1]. When ``metrics`` 
    stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * factor`` . 
    (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``metrics`` stop ascending for a ``patience`` 
    number of epochs, the learning rate will be reduced.)

    In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming above operation.

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the 
            learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` ,  the learning 
            rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
        factor (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * factor`` . 
            It should be less than 1.0. Default: 0.1.
        patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced. 
            Default: 10.
        threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` . 
            This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
        threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
            is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum 
            change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
        cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
        min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
1123 1124
        epsilon (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than epsilon, 
            the update is ignored. Default: 1e-8.
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.

    
    Returns:
        ``ReduceLROnPlateau`` instance to schedule learning rate.


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dygraph mode
            paddle.disable_static()
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
1142
            scheduler = paddle.optimizer.lr_scheduler.ReduceLROnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
1143 1144 1145 1146 1147 1148
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
            for epoch in range(20):
                for batch_id in range(2):
                    x = paddle.to_tensor(x)
                    out = linear(x)
                    loss = paddle.reduce_mean(out)
1149
                    loss.backward()
1150 1151 1152 1153
                    sgd.minimize(loss)
                    linear.clear_gradients()
                scheduler.step(loss)

1154
            # train on static mode
1155 1156 1157 1158
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1159 1160
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1161 1162
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1163
                scheduler = paddle.optimizer.lr_scheduler.ReduceLROnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
                for batch_id in range(2):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1177
                        fetch_list=loss.name)
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
                scheduler.step(out[0])

    """

    def __init__(self,
                 learning_rate,
                 mode='min',
                 factor=0.1,
                 patience=10,
                 threshold=1e-4,
                 threshold_mode='rel',
                 cooldown=0,
                 min_lr=0,
                 epsilon=1e-8,
                 verbose=False):
        mode = mode.lower()
        if mode not in ['min', 'max']:
            raise ValueError('mode: ' + mode + ' is unknown!')
        self.mode = mode

        if factor >= 1.0:
            raise ValueError(
                'new_lr = origin_lr * gamma and gamma should be < 1.0.')
        self.factor = factor

        threshold_mode = threshold_mode.lower()
        if threshold_mode not in ['rel', 'abs']:
            raise ValueError('threshold mode: ' + threshold_mode +
                             ' is unknown!')
        self.threshold_mode = threshold_mode
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
                "The type of 'learning_rate' in 'ReduceLROnPlateau' must be 'float', but received %s."
                % type(learning_rate))

        self.verbose = verbose
        self.patience = patience
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.cooldown = cooldown
        self.min_lr = min_lr
        self.epsilon = epsilon

        self.cooldown_counter = 0
        self.best = None
        self.num_bad_epochs = 0

        # Can not call Parent __init__, so implement here.
        self.base_lr = float(learning_rate)
        self.last_lr = float(learning_rate)
        self.last_epoch = 0
        self.verbose = verbose
        self._var_name = None

    # "cooldown_counter / best / num_bad_epochs / last_epoch / last_lr" will be stored.
    def _state_keys(self):
        self.keys = [
            'cooldown_counter', 'best', 'num_bad_epochs', 'last_epoch',
            'last_lr'
        ]

    def step(self, metrics, epoch=None):
        """
        step should be called after 'minimize' . It will update the learning rate in optimizer according to ``metrics`` .  
        The new learning rate will take effect on next epoch.

        Args:
            metrics (Tensor|numpy.ndarray|float): Which will be monitored to determine whether the learning rate will reduce. 
                If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. If it's 'Tensor' or
                'numpy.ndarray', its shape must be [1].
            epoch (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.

        Returns:
            None
        
        Examples:
            Please refer to the example of current _LRScheduler.
        """
        if epoch is None:
            self.last_epoch = self.last_epoch + 1
        else:
            self.last_epoch = epoch

        # loss must be 1-D Tensor with shape [1]
        if isinstance(metrics, (Tensor, numpy.ndarray)):
            assert len(metrics.shape) == 1 and metrics.shape[0] == 1, "the metrics.shape " \
                "should be (1L,), but the current metrics.shape is {}. Maybe that "  \
                "you should call paddle.mean to process it first.".format(loss.shape)
        elif not isinstance(metrics,
                            (int, float, numpy.float32, numpy.float64)):
            raise TypeError(
                "metrics must be 'int', 'float', 'np.float', 'numpy.ndarray' or 'paddle.Tensor', but receive {}".
                format(type(metrics)))

        if self.cooldown_counter > 0:
            self.cooldown_counter -= 1
        else:
            if self.best is None or self._is_better(metrics, self.best):
                self.best = metrics
                self.num_bad_epochs = 0
            else:
                self.num_bad_epochs += 1

            if self.num_bad_epochs > self.patience:
                self.cooldown_counter = self.cooldown
                self.num_bad_epochs = 0
                new_lr = max(self.last_lr * self.factor, self.min_lr)
                if self.last_lr - new_lr > self.epsilon:
                    self.last_lr = new_lr
                    if self.verbose:
                        print('Epoch {}: {} set learning rate to {}.'.format(
                            self.last_epoch, self.__class__.__name__,
                            self.last_lr))

    def _is_better(self, current, best):
        print("mode", self.mode, 'threshold_mode', self.threshold_mode)
        if self.mode == 'min' and self.threshold_mode == 'rel':
            return current < best - best * self.threshold

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return current < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            return current > best + best * self.threshold

        else:
            return current > best + self.threshold


class CosineAnnealingLR(_LRScheduler):
    """

    Set the learning rate using a cosine annealing schedule, where :math:`\eta_{max}` is set to 
    the initial learning_rate. :math:`T_{cur}` is the number of epochs since the last restart in 
    SGDR:

        \begin{aligned}
            \eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1
            + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right),
            & T_{cur} \neq (2k+1)T_{max}; \\
            \eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min})
            \left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right),
            & T_{cur} = (2k+1)T_{max}.
        \end{aligned}

    The algorithm can be described as following.

    .. math::
        \begin{aligned}
            \eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1
            + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right),
            & T_{cur} \neq (2k+1)T_{max}; \\
            \eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min})
            \left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right),
            & T_{cur} = (2k+1)T_{max}.
        \end{aligned}
    
    It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts <https://arxiv.org/abs/1608.03983>`_. 
    Note that this only implements the cosine annealing part of SGDR, and not the restarts.
    
    Args:
        learning_rate (float): The initial learning rate, that is :math:`\eta_{max}` . It can be set to python float or int number.
        T_max (int): Maximum number of iterations. It is half of the decay cycle of learning rate.
        eta_min (float|int, optional): Minimum learning rate, that is :math:`\eta_{min}` . Default: 0.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1343
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

    Returns:
        ``CosineAnnealingLR`` instance to schedule learning rate.

    Examples:
        
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dygraph mode
            paddle.disable_static()
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
1359
            scheduler = paddle.optimizer.lr_scheduler.CosineAnnealingLR(learning_rate=0.5, T_max=10, verbose=True)
1360 1361 1362 1363 1364 1365
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
            for epoch in range(20):
                for batch_id in range(2):
                    x = paddle.to_tensor(x)
                    out = linear(x)
                    loss = paddle.reduce_mean(out)
1366
                    loss.backward()
1367 1368 1369 1370
                    sgd.minimize(loss)
                    linear.clear_gradients()
                scheduler.step()

1371
            # train on static mode
1372 1373 1374 1375
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1376 1377
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1378 1379
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1380
                scheduler = paddle.optimizer.lr_scheduler.CosineAnnealingLR(learning_rate=0.5, T_max=10, verbose=True)
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
                for batch_id in range(2):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1394
                        fetch_list=loss.name)
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
                scheduler.step()
    """

    def __init__(self,
                 learning_rate,
                 T_max,
                 eta_min=0,
                 last_epoch=-1,
                 verbose=False):
        if not isinstance(T_max, int):
            raise TypeError(
                "The type of 'T_max' in 'CosineAnnealingLR' must be 'int', but received %s."
                % type(T_max))
        if not isinstance(eta_min, (float, int)):
            raise TypeError(
                "The type of 'eta_min' in 'CosineAnnealingLR' must be 'float, int', but received %s."
                % type(eta_min))
        self.T_max = T_max
        self.eta_min = float(eta_min)
        super(CosineAnnealingLR, self).__init__(learning_rate, last_epoch,
                                                verbose)

    def get_lr(self):
        if self.last_epoch == 0:
            return self.base_lr
        elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
            return self.last_lr + (self.base_lr - self.eta_min) * (1 - math.cos(
                math.pi / self.T_max)) / 2

        return (1 + math.cos(math.pi * self.last_epoch / self.T_max)) / (
            1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) * (
                self.last_lr - self.eta_min) + self.eta_min

    def _get_closed_form_lr(self):
        return self.eta_min + (self.base_lr - self.eta_min) * (1 + math.cos(
            math.pi * self.last_epoch / self.T_max)) / 2