tensor_util.cc 24.2 KB
Newer Older
Y
Yang Yu 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/tensor_util.h"
C
chengduoZH 已提交
16 17
#include <algorithm>
#include <limits>
C
chengduo 已提交
18 19
#include <memory>
#include <utility>
C
chengduoZH 已提交
20
#include <vector>
Y
yuyang18 已提交
21
#include "paddle/fluid/framework/data_type.h"
22
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
23 24 25

namespace paddle {
namespace framework {
Y
Yi Wang 已提交
26 27

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
F
fengjiayi 已提交
28
                const platform::DeviceContext& ctx, Tensor* dst) {
29 30 31 32 33 34
  if (&src == dst) {
    auto src_copy = src;
    TensorCopy(src_copy, dst_place, ctx, dst);
    return;
  }

M
minqiyang 已提交
35 36
  VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
          << dst_place;
Y
Yi Wang 已提交
37 38 39 40 41 42 43 44
  src.check_memory_size();

  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
  auto src_ptr = src.data<void>();
  auto dst_ptr = dst->mutable_data(dst_place, src.type());

45 46 47 48 49 50
  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data async from " << src_place << " to "
            << dst_place;
    return;
  }

Y
Yi Wang 已提交
51 52 53 54 55 56 57 58 59 60 61 62
  auto size = src.numel() * SizeOfType(src.type());

  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
    memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
                 boost::get<platform::CPUPlace>(src_place), src_ptr, size);
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
    auto dst_cpu_place = boost::get<platform::CPUPlace>(dst_place);
    auto ctx_place = ctx.GetPlace();
63
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true);
Y
Yi Wang 已提交
64 65
    auto ctx_gpu_place = boost::get<platform::CUDAPlace>(ctx_place);
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place);
66
    auto stream =
F
fengjiayi 已提交
67
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
68
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
Y
Yi Wang 已提交
69 70 71 72 73
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
    auto src_cpu_place = boost::get<platform::CPUPlace>(src_place);
    auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
    auto ctx_place = ctx.GetPlace();
74
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true);
Y
Yi Wang 已提交
75 76
    auto ctx_gpu_place = boost::get<platform::CUDAPlace>(ctx_place);
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place);
77
    auto stream =
F
fengjiayi 已提交
78
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
79
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
Y
Yi Wang 已提交
80 81 82 83 84
  } else if (platform::is_gpu_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
    auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
    auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
    auto ctx_place = ctx.GetPlace();
85
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true);
86
    auto stream =
F
fengjiayi 已提交
87
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
C
chengduo 已提交
88 89 90 91 92 93 94
    if (platform::is_same_place(src_place, dst_place)) {
      memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                   stream);
    } else {
      if (platform::is_same_place(ctx_place, src_place)) {
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
C
chengduo 已提交
95
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
96
      } else if (platform::is_same_place(ctx_place, dst_place)) {
C
chengduo 已提交
97
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
98 99 100 101 102 103
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
      } else {
        PADDLE_THROW("ctx is not belong to dst_gpu_place or src_gpu_place.");
      }
    }
104 105
  } else {
    PADDLE_THROW("Copy from %s to %s is not supported.", src_place, dst_place);
Y
Yi Wang 已提交
106 107 108 109 110 111 112 113
  }
#endif
}

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
C
chengduo 已提交
114
  if (platform::is_gpu_place(dst_place)) {
Y
Yi Wang 已提交
115
    dev_ctx = pool.Get(dst_place);
C
chengduo 已提交
116 117
  } else {
    dev_ctx = pool.Get(src.place());
Y
Yi Wang 已提交
118 119 120 121
  }
  TensorCopy(src, dst_place, *dev_ctx, dst);
}

F
fengjiayi 已提交
122 123
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst) {
124 125 126 127 128 129
  if (&src == dst) {
    auto src_copy = src;
    TensorCopySync(src_copy, dst_place, dst);
    return;
  }

M
minqiyang 已提交
130 131
  VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
          << " to " << dst_place;
F
fengjiayi 已提交
132 133 134 135 136 137
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
  auto src_ptr = src.data<void>();
  auto dst_ptr = dst->mutable_data(dst_place, src.type());
138 139 140 141 142 143 144

  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data from " << src_place << " to "
            << dst_place;
    return;
  }

F
fengjiayi 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  auto size = src.numel() * SizeOfType(src.type());
  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
    memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
                 boost::get<platform::CPUPlace>(src_place), src_ptr, size);
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
    auto dst_cpu_place = boost::get<platform::CPUPlace>(dst_place);
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
    auto src_cpu_place = boost::get<platform::CPUPlace>(src_place);
    auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
  } else if (platform::is_gpu_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
M
minqiyang 已提交
163 164
    auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
    auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
F
fengjiayi 已提交
165
    memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
W
Wu Yi 已提交
166 167 168 169 170 171
  } else if (platform::is_cuda_pinned_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
    auto src_pinned_place = boost::get<platform::CUDAPinnedPlace>(src_place);
    auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
    memory::Copy(dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size,
                 nullptr);
172 173
  } else {
    PADDLE_THROW("Copy from %s to %s is not supported.", src_place, dst_place);
F
fengjiayi 已提交
174 175 176 177
  }
#endif
}

Y
Yang Yu 已提交
178 179 180 181 182 183 184 185 186 187 188 189
template <typename Predicate, typename DevCtx>
struct AnyDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AnyDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
D
dzhwinter 已提交
190
  void apply() const {
Y
Yang Yu 已提交
191 192
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenScalar<bool>::From(*out_);
Y
Yang Yu 已提交
193
    // return any of predicate_(t) is true.
Y
Yang Yu 已提交
194 195 196 197 198 199 200
    o.device(*ctx_.eigen_device()) = predicate_(t).any();
  }
};

template <typename Predicate, typename DevCtx>
inline void AnyImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
Y
Yu Yang 已提交
201 202
  VisitDataType(tensor.type(), AnyDTypeVisitor<Predicate, DevCtx>(
                                   predicate, tensor, ctx, out));
Y
Yang Yu 已提交
203 204 205
}

template <typename Predicate>
206 207
class AnyVisitor : public boost::static_visitor<bool> {
 private:
Y
Yang Yu 已提交
208 209 210
  const framework::Tensor& tensor_;
  Predicate predicate_;

211
 public:
Y
Yang Yu 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  AnyVisitor(const framework::Tensor& tensor, Predicate predicate)
      : tensor_(tensor), predicate_(std::move(predicate)) {}

  template <typename Place>
  bool operator()(const Place& place) const {
    framework::Tensor out;
    out.Resize({1});
    out.mutable_data<bool>(place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    AnyImpl(predicate_, tensor_, *ctx, &out);
    return this->GetResult(out, place);
  }

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPlace& gpu) const {
    platform::CPUPlace cpu;
    framework::Tensor tmp;
    tmp.Resize({1});
    tmp.mutable_data<bool>(cpu);
Y
Yang Yu 已提交
231 232
    auto gpuctx = platform::DeviceContextPool::Instance().Get(gpu);
    gpuctx->Wait();
Y
Yi Wang 已提交
233
    TensorCopy(out, cpu, *gpuctx, &tmp);
Y
Yang Yu 已提交
234
    gpuctx->Wait();
Y
Yang Yu 已提交
235 236 237 238 239 240 241
    return GetResult(tmp, cpu);
  }

  bool GetResult(const framework::Tensor& out,
                 const platform::CPUPlace& cpu) const {
    return *out.data<bool>();
  }
C
chengduoZH 已提交
242 243 244 245 246

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPinnedPlace& cpu) const {
    return *out.data<bool>();
  }
Y
Yang Yu 已提交
247 248
};

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
template <typename Predicate>
class AnyOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AnyOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(std::move(predicate)) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize({1});
    out_->mutable_data<bool>(place);
    AnyImpl(predicate_, tensor_, *ctx, out_);
  }
};

Y
Yang Yu 已提交
270 271 272 273 274 275 276
template <typename Predicate>
inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
  AnyVisitor<Predicate> visitor(tensor, predicate);
  auto place = tensor.place();
  return platform::VisitPlace(place, visitor);
}

277 278 279 280 281 282 283 284
template <typename Predicate>
inline void Any(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AnyOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
285
struct ContainsNANPredicate {
Y
Yang Yu 已提交
286 287 288
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isnan()) {
Y
Yang Yu 已提交
289
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
290 291 292 293
    return eigen_vec.isnan();
  }
};

Y
Yi Wang 已提交
294 295
bool TensorContainsNAN(const framework::Tensor& tensor) {
  ContainsNANPredicate predicate;
Y
Yang Yu 已提交
296 297 298
  return Any(tensor, predicate);
}

299 300 301 302 303 304
void TensorContainsNAN(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsNANPredicate predicate;
  Any(tensor, predicate, out);
}

Y
Yi Wang 已提交
305
struct ContainsInfPredicate {
Y
Yang Yu 已提交
306 307 308
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isinf()) {
Y
Yang Yu 已提交
309
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
310 311 312 313
    return eigen_vec.isinf();
  }
};

Y
Yi Wang 已提交
314 315
bool TensorContainsInf(const framework::Tensor& tensor) {
  ContainsInfPredicate predicate;
Y
Yang Yu 已提交
316 317 318
  return Any(tensor, predicate);
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
void TensorContainsInf(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsInfPredicate predicate;
  Any(tensor, predicate, out);
}

// NOTE(dzhwinter):
// Isfinite need a AllVisitor to loop through all the elements.
// We choose two cuda call instead of one allvisitor. The AllVisitor
// should be implemented if the performance hurts.
bool TensorIsfinite(const framework::Tensor& tensor) {
  ContainsInfPredicate pred_inf;
  ContainsNANPredicate pred_nan;
  return !Any(tensor, pred_inf) && !Any(tensor, pred_nan);
}

#ifdef PADDLE_WITH_CUDA
template <typename T>
static inline void __global__ BothFalse(const T* cmp, T* out) {
  out[0] = (!cmp[0]) && (!out[0]);
}
#endif

struct BothFalseVisitor : public boost::static_visitor<> {
  const framework::Tensor& in_;
  mutable framework::Tensor* out_;
  BothFalseVisitor(const framework::Tensor& in, framework::Tensor* out)
      : in_(in), out_(out) {}

  template <typename Place>
  void operator()(const Place& place) const {
    VisitorImpl(place);
  }

  void VisitorImpl(const platform::CUDAPlace& gpu) const {
#ifdef PADDLE_WITH_CUDA
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(gpu);
    BothFalse<bool><<<1, 1, 0, ctx->stream()>>>(in_.data<bool>(),
                                                out_->mutable_data<bool>(gpu));
#endif
  }

  void VisitorImpl(const platform::CPUPlace& cpu) const {
    bool lhs = !in_.data<bool>()[0];
    bool rhs = !out_->mutable_data<bool>(cpu)[0];
    out_->mutable_data<bool>(cpu)[0] = lhs && rhs;
  }

  void VisitorImpl(
      const platform::CUDAPinnedPlace& cpu /* equals to cpu*/) const {
    bool lhs = !in_.data<bool>()[0];
    bool rhs = !out_->mutable_data<bool>(cpu)[0];
    out_->mutable_data<bool>(cpu)[0] = lhs && rhs;
  }
};

void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInf(tensor, &tmp);
  TensorContainsNAN(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
384 385 386 387 388 389 390 391 392 393
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {  // the 2nd field, tensor description
     // int32_t  size
     // void*    protobuf message
    proto::VarType::TensorDesc desc;
Y
Yu Yang 已提交
394
    desc.set_data_type(tensor.type());
Y
Yi Wang 已提交
395 396 397 398 399 400 401 402 403 404
    auto dims = framework::vectorize(tensor.dims());
    auto* pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    std::copy(dims.begin(), dims.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
Y
yuyang18 已提交
405 406
    uint64_t size = tensor.numel() * framework::SizeOfType(tensor.type());

Y
Yi Wang 已提交
407
    auto* data_ptr = tensor.data<void>();
T
tangwei12 已提交
408 409 410
    PADDLE_ENFORCE_LT(size, std::numeric_limits<std::streamsize>::max(),
                      platform::errors::ResourceExhausted(
                          "tensor size %d overflow when writing tensor", size));
Y
Yi Wang 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    if (platform::is_gpu_place(tensor.place())) {
#ifdef PADDLE_WITH_CUDA
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& gpu_dev_ctx =
          static_cast<const platform::CUDADeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(),
                     boost::get<platform::CUDAPlace>(tensor.place()),
                     reinterpret_cast<const void*>(data), size_to_write,
                     gpu_dev_ctx.stream());
        gpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
T
tangwei12 已提交
431 432
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
Y
Yi Wang 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446
#endif
    } else {
      os.write(static_cast<const char*>(data_ptr),
               static_cast<std::streamsize>(size));
    }
  }
}

struct DeserializedDataFunctor {
  DeserializedDataFunctor(void** buf, Tensor* tensor,
                          const platform::Place& place)
      : buf_(buf), tensor_(tensor), place_(place) {}

  template <typename T>
D
dzhwinter 已提交
447
  void apply() {
Y
Yi Wang 已提交
448 449 450 451 452 453 454 455
    *buf_ = tensor_->mutable_data<T>(place_);
  }

  void** buf_;
  Tensor* tensor_;
  platform::Place place_;
};

T
tangwei12 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));

  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));

  proto::VarType::TensorDesc desc;
  {  // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
  }
  {  // read tensor
    tensor->Resize(framework::make_ddim(shape));
    size_t seekg = seek * framework::SizeOfType(desc.data_type());
    is.seekg(seekg, is.cur);

    void* buf;
    auto ctx = platform::CPUDeviceContext();
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
    if (platform::is_gpu_place(dev_ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(shape));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
    }
  }
}

Y
Yi Wang 已提交
510 511 512 513
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));
T
tangwei12 已提交
514 515 516 517 518
  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));
Y
Yi Wang 已提交
519 520 521 522 523 524 525
  proto::VarType::TensorDesc desc;
  {  // int32_t size
     // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
T
tangwei12 已提交
526 527 528
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
Y
Yi Wang 已提交
529 530 531 532 533 534 535 536
  }
  {  // read tensor
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
    tensor->Resize(framework::make_ddim(dims));
    void* buf;
    auto ctx = platform::CPUDeviceContext();
Y
Yu Yang 已提交
537
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
Y
Yi Wang 已提交
538 539 540 541 542 543 544
    if (platform::is_gpu_place(dev_ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(dims));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
Y
yuyang18 已提交
545
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
546 547 548
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
#else
T
tangwei12 已提交
549 550
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
Y
Yi Wang 已提交
551 552 553 554 555
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
Y
yuyang18 已提交
556
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
557 558 559 560
    }
  }
}

6
633WHU 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
// get tensor data point by DLDataType
void* GetDstPtrByDLDataType(DLDataType type, framework::Tensor* dst,
                            const platform::Place& dst_place) {
  // vector types not currently supported
  PADDLE_ENFORCE_LE(type.lanes, 1, "vector types not currently supported");

  switch (type.bits) {
    case 8:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int8_t>(dst_place));
      if (type.code == kDLUInt)
        return static_cast<void*>(dst->mutable_data<uint8_t>(dst_place));
      PADDLE_THROW("There is no this type.code <%d> when type.bits is <%d>.",
                   type.code, type.bits);
    case 16:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int16_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::float16>(dst_place));
      PADDLE_THROW("There is no this type.code <%d> when type.bits is <%d>.",
                   type.code, type.bits);
    case 32:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int32_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<float>(dst_place));
      PADDLE_THROW("There is no this type.code <%d> when type.bits is <%d>.",
                   type.code, type.bits);
    case 64:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int64_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<double>(dst_place));
      PADDLE_THROW("There is no this type.code <%d> when type.bits is <%d>.",
                   type.code, type.bits);
    default:
      PADDLE_THROW("Unsupport type.bits %d", type.bits);
  }
}

void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst) {
  platform::CPUPlace dst_place = platform::CPUPlace();
  platform::CPUPlace src_place = platform::CPUPlace();

  std::vector<int64_t> vec;
  std::copy(dl_tensor.shape, dl_tensor.shape + dl_tensor.ndim,
            std::back_inserter(vec));

  framework::DDim vddim = framework::make_ddim(vec);

  dst->Resize(vddim);
  ::DLDataType type = dl_tensor.dtype;
  void* dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);

  auto src_ptr = static_cast<const void*>(dl_tensor.data);
  auto size = paddle::framework::product(vddim) * type.bits / 8;

  if (dl_tensor.ctx.device_type == kDLCPU) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
#ifdef PADDLE_WITH_CUDA
  if (dl_tensor.ctx.device_type == kDLGPU) {
    platform::CUDAPlace dst_place =
        platform::CUDAPlace(dl_tensor.ctx.device_id);
    platform::CUDAPlace src_place =
        platform::CUDAPlace(dl_tensor.ctx.device_id);
    dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(dst_place);
    memory::Copy(
        dst_place, dst_ptr, src_place, src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(*ctx).stream());
  }
#endif
}

637 638 639 640 641
template <typename T>
std::ostream& print_tensor(std::ostream& os, const framework::Tensor& tensor) {
  auto inspect = tensor.data<T>();
  auto element_num = tensor.numel();

642
  os << "  - data: [";
643 644 645 646 647 648 649 650 651 652 653
  if (element_num > 0) {
    os << inspect[0];
    for (int j = 1; j < element_num; ++j) {
      os << " " << inspect[j];
    }
  }
  os << "]";
  return os;
}

std::ostream& operator<<(std::ostream& os, const Tensor& t) {
654 655 656
  os << "  - place: " << t.place() << "\n";
  os << "  - shape: [" << t.dims() << "]\n";
  os << "  - layout: " << DataLayoutToString(t.layout()) << "\n";
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

  Tensor tensor;
  tensor.Resize(t.dims());
  if (platform::is_cpu_place(t.place())) {
    tensor.ShareDataWith(t);
  } else {
    platform::CPUPlace place;
    framework::TensorCopy(t, place, &tensor);
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();
  }

#define PrintTensorCallback(cpp_type, proto_type) \
  do {                                            \
    if (tensor.type() == proto_type) {            \
673
      os << "  - dtype: " << proto_type << "\n";  \
674 675 676 677 678 679 680 681 682 683
      print_tensor<cpp_type>(os, tensor);         \
      return os;                                  \
    }                                             \
  } while (0)

  _ForEachDataType_(PrintTensorCallback);
  VLOG(1) << "PrintVar: unrecognized data type:" << t.type();
  return os;
}

Y
Yang Yu 已提交
684 685
}  // namespace framework
}  // namespace paddle