partial_program.py 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
from paddle.fluid import framework, backward, core
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import switch_to_static_graph
import paddle.compat as cpt


class PartialProgramLayer(layers.Layer):
    """
    PartialProgramLayer wraps all the ops from layers decorated by `@declarative`
    and execute them as a static subgraph.

    .. note::
29 30 31
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
        inputs(list[Variable]): The input list of the decorated function by `@declarative`.
        outputs(list[Variable]): The output list of the decorated function by `@declarative`.
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
        Layer: A Layer object that run all ops internally in static mode.
    """

    def __init__(self, main_program, inputs, outputs, parameters=None):
        super(PartialProgramLayer, self).__init__()
        self.inputs = inputs
        self.outputs = outputs
48 49 50 51 52 53 54
        self._params = parameters if parameters is not None else []
        # Check all params from main program can be found in self._params:
        # 1. parameter in self._params should be type `framework.ParamBase` which are created in dygraph.
        # 2. parameter from transformed program shall be found in self._params.
        #    Because they share same data with ParamBase of original dygraph.
        self._check_params_all_inited(main_program)

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        self._infer_program = main_program
        self._train_program = self._append_backward_desc()
        # Switch infer or train by train() and eval()
        self._trace_program = None
        self._set_grad_type(self._params)
        self._inner_scope = core.Scope()
        # Set default mode to train
        self.train()

    @switch_to_static_graph
    def _append_backward_desc(self):
        program = self._infer_program.clone()
        targets = []
        for out in self.outputs:
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

        return program

    def train(self):
        # self.training is inherited from layers.Layer
        self.training = True
        self._trace_program = self._train_program

    def eval(self):
        self.training = False
        self._trace_program = self._infer_program

    def forward(self, inputs):
        in_vars, out_vars, tmp_scope_vec = self._prepare(inputs)

        framework._dygraph_tracer().trace_op(
            type='run_program',
            inputs={
                'X': valid_vars(in_vars),
                'Params': valid_vars(self._params)
            },
            outputs={'Out': valid_vars(out_vars),
                     'OutScope': tmp_scope_vec},
            attrs={
                'global_block': self._trace_program.desc.block(0),
                'start_op_index': 0,
                'end_op_index': self._infer_program.desc.block(0).op_size(),
                'is_test': not self.training
            })

        outs = out_vars
        if len(outs) == 1:
            outs = outs[0]
        return outs

    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
        # Convert variable into VarBase and feed in training data.
        input_vars = []
        for i, value in enumerate(inputs):
            if isinstance(value, np.ndarray):
                var = core.VarBase(
                    value=value,
                    name=self.inputs[i].desc.name(),
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True)
            elif isinstance(value, core.VarBase):
                var = value
                var.name = self.inputs[i].desc.name()
            else:
                continue
            input_vars.append(var)
        # Create VarBase to receive output data.
        out_vars = []
        for var in self.outputs:
            if not isinstance(var, framework.Variable):
                continue
            var_desc = var.desc
            var_base = core.VarBase(var_desc.dtype(),
                                    var_desc.shape(),
                                    var_desc.name(), var_desc.type(), False)
            out_vars.append(var_base)

        # Hold forward variables
        tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                     "program_out_scope",
                                     core.VarDesc.VarType.STEP_SCOPES, True)

        tmp_scope_vec.value().set_scope(self._inner_scope)

        return input_vars, out_vars, tmp_scope_vec

    def _set_grad_type(self, params):
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
            grad_var = self._train_program.desc.block(0).find_var(
                cpt.to_bytes(grad_name))
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
                % type(self._params))

        params_name_set = set()
        for i, param in enumerate(self._params):
            if not isinstance(param, framework.ParamBase):
                raise TypeError(
                    'Type of self._params[{}] in PartialProgramLayer should be framework.ParamBase, but received {}.'.
                    format(i, type(param)))
            params_name_set.add(param.name)

        for block in main_program.blocks:
            for name, var in block.vars.items():
                if isinstance(var, framework.Parameter):
                    if name not in params_name_set:
                        raise ValueError(
                            "\n\tWe don't support to define layer with parameters in the function "
                            "decorated by `@declarative`.\n\tBecause that will re-defined parameters "
                            "every time when you run the function.\n\t"
                            "But we found parameter(%s) was created in the decorated function.\n\t"
                            "Please define the layer with parameters in `__init__` function."
                            % name)

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

def valid_vars(vars):
    """
    Note: run_program_op.InferShape requires `X`/'Out' not be null.
    But it's common in dy2static, fake varBase is created to handle the
    problem.
    """
    if vars:
        return vars
    return [
        core.VarBase(
            value=[1],
            name='Fake_var',
            place=framework._current_expected_place())
    ]


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

    return PartialProgramLayer(concrete_program.main_program, inputs,
                               concrete_program.outputs,
                               concrete_program.parameters)