reshape_op.cc 5.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/reshape_op.h"
Y
Yibing Liu 已提交
16 17 18 19 20 21

namespace paddle {
namespace operators {

class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
22
  ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yibing Liu 已提交
23
      : OpProtoAndCheckerMaker(proto, op_checker) {
_青葱's avatar
_青葱 已提交
24 25 26 27 28 29 30 31 32 33
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
             "(Tensor<int32>, optional). If provided, reshape according to "
             "this given shape. That is to say it has a higher priority than "
             "the shape attribute, while the shape attribute still should be "
             "set correctly to gurantee shape inference in compile time.")
        .AsDispensable();
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
    AddAttr<std::vector<int>>(
        "shape", "(std::vector<int>) Target shape of reshape operator.");
Y
Yan Chunwei 已提交
34
    AddAttr<bool>("inplace",
_青葱's avatar
_青葱 已提交
35 36 37 38 39
                  "(default: false) Change the source tensor's shape without "
                  "memory copy. When Attr(inplace) is set true, the output "
                  "tensor shares memory with Input(X), otherwise, a new output "
                  "tensor is created, and its data are copied from Input(x).")
        .SetDefault(false);
K
kexinzhao 已提交
40 41
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
42

_青葱's avatar
_青葱 已提交
43 44 45 46
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.

Examples:
Y
Yibing Liu 已提交
47

_青葱's avatar
_青葱 已提交
48 49 50
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.
Y
Yibing Liu 已提交
51

_青葱's avatar
_青葱 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).

Note:

1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
dimension value will be copied from Input(X) at runtime. Note that the index of
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
Attr(shape) still should be set correctly to gurantee shape inference in 
compile-time.
Y
Yibing Liu 已提交
79

Y
Yibing Liu 已提交
80 81 82 83 84 85 86 87 88 89 90 91
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

92
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
93 94 95 96
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
97
  }
_青葱's avatar
_青葱 已提交
98 99 100 101 102 103 104 105

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
        ctx.device_context());
  }
Y
Yibing Liu 已提交
106 107 108 109 110
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
111
using CPU = paddle::platform::CPUDeviceContext;
Y
Yibing Liu 已提交
112 113 114

REGISTER_OP(reshape, ops::ReshapeOp, ops::ReshapeOpMaker, reshape_grad,
            ops::ReshapeGradOp);
115 116 117 118 119 120 121 122
REGISTER_OP_CPU_KERNEL(reshape, ops::ReshapeKernel<CPU, float>,
                       ops::ReshapeKernel<CPU, double>,
                       ops::ReshapeKernel<CPU, int>,
                       ops::ReshapeKernel<CPU, int64_t>);
REGISTER_OP_CPU_KERNEL(reshape_grad, ops::ReshapeGradKernel<CPU, float>,
                       ops::ReshapeGradKernel<CPU, double>,
                       ops::ReshapeGradKernel<CPU, int>,
                       ops::ReshapeGradKernel<CPU, int64_t>);