checkpoint.py 11.7 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import collections
19
import functools
20
from ..framework import Variable, default_main_program, in_dygraph_mode, dygraph_only, Parameter, ParamBase, _varbase_creator, _dygraph_tracer
21
import pickle
22
import six
23 24
from . import learning_rate_scheduler
import warnings
H
hong 已提交
25
from .. import core
26
from .base import guard
27 28
from paddle.fluid.dygraph.jit import _SaveLoadConfig
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers
29

H
hong 已提交
30 31 32 33
__all__ = [
    'save_dygraph',
    'load_dygraph',
]
34 35


36 37 38 39 40 41 42 43 44
def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename', 'keep_name_table']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.fluid.load_dygraph` is not supported."
                % (key))
45

46 47 48 49 50
    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)
    inner_config.keep_name_table = configs.get('keep_name_table', None)
51

52
    return inner_config
53 54


H
hong 已提交
55 56 57
@dygraph_only
def save_dygraph(state_dict, model_path):
    '''
58 59
    :api_attr: imperative

H
hong 已提交
60 61 62 63
    Save Layer's state_dict to disk. This will generate a file with suffix ".pdparams"
    
    The state_dict is get from Layers.state_dict function
    
64
    Args:
H
hong 已提交
65 66
        state_dict(dict) : The state dict to be saved.
        model_path(str) : the file prefix to save the state_dict. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised
67 68

    Returns:
L
lujun 已提交
69
        None
70 71

    Examples:
H
hong 已提交
72 73 74 75 76
        .. code-block:: python

            import paddle.fluid as fluid

            with fluid.dygraph.guard():
77
                emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
78 79 80 81

                state_dict = emb.state_dict()
                fluid.save_dygraph( state_dict, "paddle_dy")

82 83
                adam = fluid.optimizer.Adam( learning_rate = fluid.layers.noam_decay( 100, 10000),
                                             parameter_list = emb.parameters() )
H
hong 已提交
84 85 86 87 88 89 90

                state_dict = adam.state_dict()
                fluid.save_dygraph( state_dict, "paddle_dy")

    '''

    base_name = os.path.basename(model_path)
91
    assert base_name != "", "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received filename is empty string."
H
hong 已提交
92 93 94 95

    suffix = ".pdparams"
    assert len(state_dict) > 0, "state_dict is empty, no need to save"

96
    param_num = 0
H
hong 已提交
97
    for k, v in state_dict.items():
98 99 100 101 102
        if isinstance(v, ParamBase):
            param_num += 1

    if param_num == 0:
        suffix = ".pdopt"
H
hong 已提交
103

H
hong 已提交
104 105 106 107 108
    model_dict = {}
    name_table = {}
    for k, v in state_dict.items():
        if isinstance(v, (Variable, core.VarBase)):
            model_dict[k] = v.numpy()
109
            name_table[k] = v.name
H
hong 已提交
110 111 112 113
        else:
            model_dict[k] = v
    model_dict["StructuredToParameterName@@"] = name_table

114 115 116 117 118 119
    file_name = model_path + suffix
    dir_name = os.path.dirname(file_name)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

    with open(file_name, 'wb') as f:
120
        pickle.dump(model_dict, f, protocol=2)
H
hong 已提交
121 122


123 124
# NOTE(chenweihang): load_dygraph will deprecated in future, we don't 
# support new loading features for it
125 126
# TODO(qingqing01): remove dygraph_only to support loading static model.
# maybe need to unify the loading interface after 2.0 API is ready.
127
# @dygraph_only
128
def load_dygraph(model_path, **configs):
H
hong 已提交
129
    '''
130 131
    :api_attr: imperative
    
132 133 134 135
    Load parameter state dict from disk.

    .. note::
        Due to some historical reasons, if you load ``state_dict`` from the saved 
136
        result of `paddle.static.save_inference_model`, the structured variable name 
137 138
        will cannot be restored. You need to set the argument `use_structured_name=False` 
        when using `Layer.set_state_dict` later.
H
hong 已提交
139 140

    Args:
141 142
        model_path(str) : The file prefix store the state_dict. 
            (The path should Not contain suffix '.pdparams') 
143 144 145 146 147 148 149
        **configs (dict, optional): other save configuration options for compatibility. We do not 
            recommend using these configurations, if not necessary, DO NOT use them. Default None.
            The following options are currently supported:
            (1) model_filename (string): The inference model file name of the paddle 1.x ``save_inference_model`` 
            save format. Default file name is :code:`__model__` . 
            (2) params_filename (string): The persistable variables file name of the paddle 1.x ``save_inference_model`` 
            save format. No default file name, save variables separately by default.
H
hong 已提交
150 151 152

    Returns:
        state_dict(dict) : the dict store the state_dict
L
lujun 已提交
153

H
hong 已提交
154
    Examples:
155
        .. code-block:: python
L
lujun 已提交
156

157
            import paddle
158 159
            import paddle.fluid as fluid

160
            paddle.disable_static()
H
hong 已提交
161

162
            emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
163

164
            state_dict = emb.state_dict()
165
            fluid.save_dygraph(state_dict, "paddle_dy")
H
hong 已提交
166

167
            scheduler = paddle.optimizer.lr_scheduler.NoamLR(	
168 169 170 171 172
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            state_dict = adam.state_dict()
173
            fluid.save_dygraph(state_dict, "paddle_dy")
H
hong 已提交
174

175
            para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
176 177
    '''
    # deal with argument `model_path`
178 179 180 181 182 183
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]

184
    para_dict = None
H
hong 已提交
185
    opti_dict = None
186
    params_file_path = model_prefix + ".pdparams"
187
    opti_file_path = model_prefix + ".pdopt"
188

189
    # deal with argument `config`
190
    config = _parse_load_config(configs)
191

192
    if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
193
        # Load state dict by `save_dygraph` save format
M
MRXLT 已提交
194
        para_dict = {}
195 196 197 198 199
        if os.path.exists(params_file_path):
            with open(params_file_path, 'rb') as f:
                para_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')

200
        if not config.keep_name_table and "StructuredToParameterName@@" in para_dict:
201 202 203 204 205 206
            del para_dict["StructuredToParameterName@@"]

        if os.path.exists(opti_file_path):
            with open(opti_file_path, 'rb') as f:
                opti_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    else:
        # check model path
        if not os.path.isdir(model_prefix):
            raise ValueError("Model saved directory '%s' is not exists." %
                             model_prefix)

        # check whether model file exists
        if config.model_filename is None:
            model_filename = '__model__'
        else:
            model_filename = config.model_filename
        model_file_path = os.path.join(model_path, model_filename)

        if os.path.exists(model_file_path):
            # Load state dict by `jit.save/io.save_inference_model` save format
            # NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
            # The model saved by `save_inference_model` does not completely correspond to 
            # the information required by the `state_dict` under the dygraph. 
            # `save_inference_model` not save structured name, we need to remind 
            # the user to configure the `use_structured_name` argument when `set_state_dict`
            # NOTE(chenweihang): `jit.save` doesn't save optimizer state 

            # 1. load program desc & construct _ProgramHolder
            programs = _construct_program_holders(model_path,
                                                  config.model_filename)

            # 2. load layer parameters & buffers
            # NOTE: using fluid.dygraph.guard() here will cause import error in py2
            with guard():
                persistable_var_dict = _construct_params_and_buffers(
                    model_prefix,
                    programs,
                    config.params_filename,
                    append_suffix=False)

                # 3. construct state_dict
                para_dict = dict()
                for var_name in persistable_var_dict:
                    para_dict[var_name] = persistable_var_dict[var_name].numpy()

247 248 249
                # if *.info exists, we can recover structured_name
                var_info_filename = str(config.params_filename) + ".info"
                var_info_path = os.path.join(model_prefix, var_info_filename)
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
                if os.path.exists(var_info_path):
                    with open(var_info_path, 'rb') as f:
                        extra_var_info = pickle.load(f)
                    structured_para_dict = dict()
                    for var_name in para_dict:
                        structured_name = extra_var_info[var_name].get(
                            'structured_name', None)
                        assert structured_name is not None, "Cannot find saved variable (%s)'s structured name in saved model." % var_name
                        structured_para_dict[structured_name] = para_dict[
                            var_name]
                    para_dict = structured_para_dict
        else:
            # load state dict by `io.save_params/persistables` save format
            # TODO(chenweihang): [ Now only supports loading parameters seperately ]
            # If users save all parameters as one file, the [ variable.name -> variable ]
            # mapping info will lost, so users need to give variable list, but users build 
            # variable list in dygraph mode is difficult, we recommend users to use
267
            # paddle.static.load_program_state in this case
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

            # Try to load all the files in the directory in VarBase format, 
            # the file name is used as the name of VarBase
            load_var_list = []

            # 1. load file names
            var_name_list = []
            for root, _, files in os.walk(model_path):
                for filename in files:
                    file_path = os.path.join(root, filename)
                    tmp_var_name = os.path.relpath(file_path, model_path)
                    var_name = tmp_var_name.replace("\\", "/")
                    var_name_list.append(var_name)

            # 2. create and load VarBase
            with guard():
                for name in var_name_list:
                    new_var = _varbase_creator(name=name, persistable=True)
                    _dygraph_tracer().trace_op(
                        type='load',
                        inputs={},
                        outputs={'Out': new_var},
                        attrs={'file_path': os.path.join(model_path, name)})
                    load_var_list.append(new_var)

            # 3. construct state_dict
            para_dict = dict()
            for var in load_var_list:
                para_dict[var.name] = var.numpy()
H
hong 已提交
297 298

    return para_dict, opti_dict