reader.py 2.3 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

T
typhoonzero 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
import random
from paddle.v2.image import load_and_transform
import paddle.v2 as paddle
from multiprocessing import cpu_count


def train_mapper(sample):
    '''
    map image path to type needed by model input layer for the training set
    '''
    img, label = sample
    img = paddle.image.load_image(img)
    img = paddle.image.simple_transform(img, 256, 224, True)
    return img.flatten().astype('float32'), label


def test_mapper(sample):
    '''
    map image path to type needed by model input layer for the test set
    '''
    img, label = sample
    img = paddle.image.load_image(img)
    img = paddle.image.simple_transform(img, 256, 224, True)
    return img.flatten().astype('float32'), label


def train_reader(train_list, buffered_size=1024):
    def reader():
        with open(train_list, 'r') as f:
            lines = [line.strip() for line in f]
            for line in lines:
                img_path, lab = line.strip().split('\t')
                yield img_path, int(lab)

    return paddle.reader.xmap_readers(train_mapper, reader,
                                      cpu_count(), buffered_size)


def test_reader(test_list, buffered_size=1024):
    def reader():
        with open(test_list, 'r') as f:
            lines = [line.strip() for line in f]
            for line in lines:
                img_path, lab = line.strip().split('\t')
                yield img_path, int(lab)

    return paddle.reader.xmap_readers(test_mapper, reader,
                                      cpu_count(), buffered_size)


if __name__ == '__main__':
    #for im in train_reader('train.list'):
    #    print len(im[0])
    #for im in train_reader('test.list'):
    #    print len(im[0])
    paddle.dataset.flowers.train()