top_k_op.cu 9.7 KB
Newer Older
武毅 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/framework/op_registry.h"
#include "paddle/platform/assert.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
struct Pair {
  __device__ __forceinline__ Pair() {}
  __device__ __forceinline__ Pair(T value, int id) : v(value), id(id) {}

  __device__ __forceinline__ void set(T value, int id) {
    v = value;
    id = id;
  }

  __device__ __forceinline__ void operator=(const Pair<T>& in) {
    v = in.v;
    id = in.id;
  }

  __device__ __forceinline__ bool operator<(const T value) const {
    return (v < value);
  }

  __device__ __forceinline__ bool operator<(const Pair<T>& in) const {
    return (v < in.v) || ((v == in.v) && (id > in.id));
  }

  __device__ __forceinline__ bool operator>(const Pair<T>& in) const {
    return (v > in.v) || ((v == in.v) && (id < in.id));
  }

  T v;
  int id;
};

template <typename T>
__device__ __forceinline__ void AddTo(Pair<T> topk[], const Pair<T>& p,
                                      int beam_size) {
  for (int k = beam_size - 2; k >= 0; k--) {
    if (topk[k] < p) {
      topk[k + 1] = topk[k];
    } else {
      topk[k + 1] = p;
      return;
    }
  }
  topk[0] = p;
}

template <typename T, int beam_size>
__device__ __forceinline__ void AddTo(Pair<T> topk[], const Pair<T>& p) {
  for (int k = beam_size - 2; k >= 0; k--) {
    if (topk[k] < p) {
      topk[k + 1] = topk[k];
    } else {
      topk[k + 1] = p;
      return;
    }
  }
  topk[0] = p;
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* src, int idx,
                                        int dim, int beam_size) {
  while (idx < dim) {
    if (topk[beam_size - 1] < src[idx]) {
      Pair<T> tmp(src[idx], idx);
      AddTo<T>(topk, tmp, beam_size);
    }
    idx += BlockSize;
  }
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* src, int idx,
                                        int dim, const Pair<T>& max,
                                        int beam_size) {
  while (idx < dim) {
    if (topk[beam_size - 1] < src[idx]) {
      Pair<T> tmp(src[idx], idx);
      if (tmp < max) {
        AddTo<T>(topk, tmp, beam_size);
      }
    }
    idx += BlockSize;
  }
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* val, int* col,
                                        int idx, int dim, int beam_size) {
  while (idx < dim) {
    if (topk[beam_size - 1] < val[idx]) {
      Pair<T> tmp(val[idx], col[idx]);
      AddTo<T>(topk, tmp, beam_size);
    }
    idx += BlockSize;
  }
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* val, int* col,
                                        int idx, int dim, const Pair<T>& max,
                                        int beam_size) {
  while (idx < dim) {
    if (topk[beam_size - 1] < val[idx]) {
      Pair<T> tmp(val[idx], col[idx]);
      if (tmp < max) {
        AddTo<T>(topk, tmp, beam_size);
      }
    }
    idx += BlockSize;
  }
}

template <typename T, int MaxLength, int BlockSize>
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int& beam,
                                              int beam_size, const T* src,
                                              bool& firstStep, bool& is_empty,
                                              Pair<T>& max, int dim,
                                              const int tid) {
  if (beam > 0) {
    int length = beam < beam_size ? beam : beam_size;
    if (firstStep) {
      firstStep = false;
      GetTopK<T, BlockSize>(topk, src, tid, dim, length);
    } else {
      for (int k = 0; k < MaxLength; k++) {
        if (k < MaxLength - beam) {
          topk[k] = topk[k + beam];
        } else {
          topk[k].set(-INFINITY, -1);
        }
      }
      if (!is_empty) {
        GetTopK<T, BlockSize>(topk + MaxLength - beam, src, tid, dim, max,
                              length);
      }
    }

    max = topk[MaxLength - 1];
    if (max.v == -1) is_empty = true;
    beam = 0;
  }
}

template <typename T, int MaxLength, int BlockSize>
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int& beam,
                                              int beam_size, const T* val,
                                              int* col, bool& firstStep,
                                              bool& is_empty, Pair<T>& max,
                                              int dim, const int tid) {
  if (beam > 0) {
    int length = beam < beam_size ? beam : beam_size;
    if (firstStep) {
      firstStep = false;
      GetTopK<T, BlockSize>(topk, val, col, tid, dim, length);
    } else {
      for (int k = 0; k < MaxLength; k++) {
        if (k < MaxLength - beam) {
          topk[k] = topk[k + beam];
        } else {
          topk[k].set(-INFINITY, -1);
        }
      }
      if (!is_empty) {
        GetTopK<T, BlockSize>(topk + MaxLength - beam, val, col, tid, dim, max,
                              length);
      }
    }

    max = topk[MaxLength - 1];
    if (max.v == -1) is_empty = true;
    beam = 0;
  }
}

template <typename T, int MaxLength, int BlockSize>
__device__ __forceinline__ void BlockReduce(Pair<T>* sh_topk, int* maxid,
                                            Pair<T> topk[], T** topVal,
                                            int** topIds, int& beam, int& k,
                                            const int tid, const int warp) {
  while (true) {
    __syncthreads();
    if (tid < BlockSize / 2) {
      if (sh_topk[tid] < sh_topk[tid + BlockSize / 2]) {
        maxid[tid] = tid + BlockSize / 2;
      } else {
        maxid[tid] = tid;
      }
    }
    __syncthreads();
    for (int stride = BlockSize / 4; stride > 0; stride = stride / 2) {
      if (tid < stride) {
        if (sh_topk[maxid[tid]] < sh_topk[maxid[tid + stride]]) {
          maxid[tid] = maxid[tid + stride];
        }
      }
      __syncthreads();
    }
    __syncthreads();

    if (tid == 0) {
      **topVal = sh_topk[maxid[0]].v;
      **topIds = sh_topk[maxid[0]].id;
      (*topVal)++;
      (*topIds)++;
    }
    if (tid == maxid[0]) beam++;
    if (--k == 0) break;
    __syncthreads();

    if (tid == maxid[0]) {
      if (beam < MaxLength) {
        sh_topk[tid] = topk[beam];
      }
    }
    if (maxid[0] / 32 == warp) {
      if (__shfl(beam, (maxid[0]) % 32, 32) == MaxLength) break;
    }
  }
}

/**
 * Each block compute one sample.
 * In a block:
 * 1. every thread get top MaxLength value;
 * 2. merge to sh_topk, block reduce and get max value;
 * 3. go to the second setp, until one thread's topk value is null;
 * 4. go to the first setp, until get the topk value.
 */
template <typename T, int MaxLength, int BlockSize>
__global__ void KeMatrixTopK(T* output, int output_stride, int* indices,
                             const T* src, int lds, int dim, int k) {
  __shared__ Pair<T> sh_topk[BlockSize];
  __shared__ int maxid[BlockSize / 2];
  const int tid = threadIdx.x;
  const int warp = threadIdx.x / 32;
  output += blockIdx.x * output_stride;
  indices += blockIdx.x * k;

  Pair<T> topk[MaxLength];
  int beam = MaxLength;
  Pair<T> max;
  bool is_empty = false;
  bool firststep = true;

  for (int k = 0; k < MaxLength; k++) {
    topk[k].set(-INFINITY, -1);
  }
  while (k) {
    ThreadGetTopK<T, MaxLength, BlockSize>(topk, beam, k,
                                           src + blockIdx.x * lds, firststep,
                                           is_empty, max, dim, tid);

    sh_topk[tid] = topk[0];
    BlockReduce<T, MaxLength, BlockSize>(sh_topk, maxid, topk, &output,
                                         &indices, beam, k, tid, warp);
  }
}

template <typename T>
Y
Yu Yang 已提交
282
class TopkOpCUDAKernel : public framework::OpKernel<T> {
武毅 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use GPUPlace.");
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    auto* indices = ctx.Output<Tensor>("Indices");
    size_t k = static_cast<int>(ctx.Attr<int>("k"));

    const T* input_data = input->data<T>();

    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    // FIXME(typhoonzero): data is always converted to type T?
    int* indices_data = indices->mutable_data<int>(ctx.GetPlace());

    size_t input_height = input->dims()[0];
    size_t input_width = input->dims()[1];
    if (k > input_width) k = input_width;

    // NOTE: pass lds and dim same to input width.
    // NOTE: old matrix implementation of stride is different to eigen.
    // TODO(typhoonzero): refine this kernel.
    dim3 threads(256, 1);
    dim3 grid(input_height, 1);

C
caoying03 已提交
308 309 310 311 312 313
    KeMatrixTopK<T, 5, 256><<<
        grid, threads, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
                              ctx.device_context())
                              .stream()>>>(output_data, output->dims()[1],
                                           indices_data, input_data,
                                           input_width, input_width, int(k));
武毅 已提交
314 315 316 317 318 319 320
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OP_GPU_KERNEL(top_k, paddle::operators::TopkOpCUDAKernel<float>);