cross_entropy.cu 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/math/cross_entropy.h"

namespace paddle {
namespace operators {
namespace math {

namespace {
template <typename T>
__global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
                                   const int N, const int D) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    PADDLE_ASSERT(label[i] >= 0 && label[i] < D);
    Y[i] = -math::TolerableValue<T>()(log(X[i * D + label[i]]));
  }
}

template <typename T>
__device__ __forceinline__ T sum_single_warp(T val) {
  val += __shfl_down(val, 16);
  val += __shfl_down(val, 8);
  val += __shfl_down(val, 4);
  val += __shfl_down(val, 2);
  val += __shfl_down(val, 1);
  return val;
}

template <typename T>
__global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
                                       const int class_num) {
  int tid = threadIdx.x;
  extern __shared__ T d_sum[];
  d_sum[tid] = 0;

  int cur_idx = tid;
  int next_idx = blockIdx.x * class_num + tid;
  while (cur_idx < class_num) {
    d_sum[tid] +=
        math::TolerableValue<T>()(std::log(X[next_idx])) * label[next_idx];
    next_idx += blockDim.x;
    cur_idx += blockDim.x;
  }
  __syncthreads();

  for (unsigned int stride = blockDim.x >> 1; stride >= 32; stride >>= 1) {
    if (tid < stride) d_sum[tid] += d_sum[tid + stride];
    __syncthreads();
  }

  T val = d_sum[tid];
  val = sum_single_warp<T>(val);
  if (tid == 0) Y[blockIdx.x] = -val;
}
}  // namespace

using Tensor = framework::Tensor;

template <typename T>
class CrossEntropyFunctor<platform::GPUPlace, T> {
 public:
Q
qijun 已提交
75
  void operator()(const platform::DeviceContext& ctx, framework::Tensor* out,
Q
qijun 已提交
76
                  const framework::Tensor* prob,
77 78 79 80 81 82 83 84 85 86 87
                  const framework::Tensor* labels, bool softLabel) {
    const T* prob_data = prob->data<T>();
    T* loss_data = out->mutable_data<T>(ctx.GetPlace());

    int batch_size = prob->dims()[0];
    int class_num = prob->dims()[1];

    if (softLabel) {
      const T* label_data = labels->data<T>();
      int block = class_num > 512 ? 512 : pow(2, int(std::log2(class_num)));

Q
qijun 已提交
88 89 90 91
      SoftCrossEntropyKernel<T><<<
          batch_size, block, block * sizeof(T),
          reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
          loss_data, prob_data, label_data, class_num);
92 93 94 95 96
    } else {
      const int* label_data = labels->data<int>();
      int block = 512;
      int grid = (batch_size + block - 1) / block;
      CrossEntropyKernel<T><<<
Q
qijun 已提交
97 98 99
          grid, block, 0,
          reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
          loss_data, prob_data, label_data, batch_size, class_num);
100 101 102 103 104 105 106 107
    }
  }
};

template class CrossEntropyFunctor<platform::GPUPlace, float>;
}  // namespace math
}  // namespace operators
}  // namespace paddle