MKLDNNLayer.cpp 11.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNLayer.h"

using namespace mkldnn;  // NOLINT
typedef memory::format format;

namespace paddle {

bool MKLDNNLayer::init(const LayerMap& layerMap,
                       const ParameterMap& parameterMap) {
  CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn."
                          << "Please set WITH_MKLDNN=ON "
                          << "and set use_mkldnn=True";
  CHECK(!useGpu_) << "Do not support GPU yet";

  // set device id before Layer::init
  setDevice(MKLDNN_DEVICE);
  // change param device to MKLDNN device
  setParamsDevice(MKLDNN_DEVICE, parameterMap);
  if (!Layer::init(layerMap, parameterMap)) {
    return false;
  }
  setOutputMap();
  checkCPUOutputsNumber();

  stream_.reset(new MKLDNNStream());
  engine_ = CPUEngine::Instance().getEngine();
  return true;
}

void MKLDNNLayer::forward(PassType passType) {
  passType_ = passType;

  {
    REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
    CHECK(!inputLayers_.empty());
    copySeqInfoToOutputs();
    size_t elemenCnt = inputLayers_[0]->getOutputValue()->getElementCnt();
    if (inputElemenCnt_ != elemenCnt) {
      VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
      // reset when input total sizes changed, not only the batchsize
      inputElemenCnt_ = elemenCnt;
      pipelineFwd_.clear();
      reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
      // all cpu device output grad or value share output's
      shareCPUDevice();
      resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_);
      // MKLDNNLayer output value should be MKLDNNMatrix
      // so external output value is necessary.
T
tensor-tang 已提交
63
      // Then external input value is not necessary,
T
tensor-tang 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
      // since input may be mkldnn internal buffer.
      CHECK(extOutVal_) << "external output value is necessary";
      output_.value = std::dynamic_pointer_cast<Matrix>(extOutVal_);
      CHECK(inVal_ && outVal_) << "internal memories are necessary";
      if (cvtInVal_) {
        pipelineFwd_.insert(pipelineFwd_.begin(), *cvtInVal_);
      }
      if (cvtOutVal_) {
        pipelineFwd_.push_back(*cvtOutVal_);
      }
      convertWeightsFromPaddle();
      printSizeInfo();
      printValueFormat();
      needResetBwd_ = true;
    }

    if (inputLayers_[0]->getType() == "data") {
      // Update input value data when input layer is "data" type,
      // since the input value data address might be changed.
      CHECK(extInVal_);
      extInVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
    }

    if (!outputOnlyMKLDNN_) {
      clearGrads();
    }
    stream_->submit(pipelineFwd_);
  }
  {
    REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
    forwardActivation();
  }
}

void MKLDNNLayer::backward(const UpdateCallback& callback) {
  if (needResetBwd_) {
    VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
    pipelineBwd_.clear();
    pipelineMergeGrad_.clear();
    mergeGrad_ = nullptr;
    resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_);
    // external output grad is not necessary
    // since output may be mkldnn internal buffer or merge them directly.
    CHECK(outGrad_) << "internal output grad is necessary";
108 109 110 111
    if (extOutGrad_) {
      CHECK_EQ(extOutGrad_->getData(), output_.grad->getData())
          << "the external buffer should share the same data with output_.grad";
    }
T
tensor-tang 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    if (cvtOutGrad_) {
      pipelineBwd_.insert(pipelineBwd_.begin(), *cvtOutGrad_);
    }
    if (cvtInGrad_) {
      pipelineBwd_.push_back(*cvtInGrad_);
    }
    printGradFormat();
    needResetBwd_ = false;
  }

  // merge grad must before backward activation
  if (mergeGrad_) {
    REGISTER_TIMER_INFO("MergeBpGrad", getName().c_str());
    stream_->submit(pipelineMergeGrad_);
  }
  {
    REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
    backwardActivation();
  }
  {
    REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
    stream_->submit(pipelineBwd_);
  }
  {
    REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
    updateWeights(callback);
  }
}

void MKLDNNLayer::reshapeInput(int& batchsize, int& height, int& width) {
  const Argument& input = inputLayers_[0]->getOutput();
  batchsize = input.getBatchSize();
  int h = input.getFrameHeight();
  int w = input.getFrameWidth();
  if (h != 0) {
    height = h;
  }
  if (w != 0) {
    width = w;
  }
}

void MKLDNNLayer::reshapeOutput(size_t height, size_t width) {
  output_.setFrameHeight(height);
  output_.setFrameWidth(width);
  for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
    outputOtherDevice_[i].setFrameHeight(height);
    outputOtherDevice_[i].setFrameWidth(width);
  }
}

void MKLDNNLayer::resetWithMatrix(MKLDNNMatrixPtr& dnn,
                                  const MatrixPtr& mat,
                                  memory::primitive_desc pd) {
  dnn = nullptr;
  if (mat == nullptr) {
    return;
  }
  dnn = MKLDNNMatrix::create(pd, mat);
}

void MKLDNNLayer::resetInValue(
    MKLDNNMatrixPtr& in, const std::shared_ptr<memory::primitive_desc>& intPD) {
  cvtInVal_ = nullptr;
  extInVal_ = nullptr;
  in = nullptr;
  CHECK_GT(bs_ * ic_ * ih_ * iw_, 0);
  auto extPD = MKLDNNMatrix::createPrimitiveDesc(
      {bs_, ic_, ih_, iw_}, format::nchw, engine_);
  const MatrixPtr& inMat = inputLayers_[0]->getOutputValue();
  in = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat);
  CHECK_EQ(inputIsOnlyMKLDNN(), in != nullptr);
  if (in == nullptr || in->getFormat() == format::nc) {
    in = MKLDNNMatrix::create(extPD, inMat);
  }
  extInVal_ = isPaddleFormat(in->getFormat()) ? in : nullptr;
  if (in->getFormat() == format::nc) {
    CHECK(ih_ == 1 && iw_ == 1);
  }
  if (nullptr == intPD || in->getPrimitiveDesc() == *intPD) {
    return;
  }
  // need create reorder
  in = MKLDNNMatrix::create(*intPD);
  extInVal_ = extInVal_ ? extInVal_ : MKLDNNMatrix::create(extPD, inMat);
  cvtInVal_ = MKLDNNMatrix::createReorder(extInVal_, in);
  CHECK(cvtInVal_) << "should not be emptry";
}

void MKLDNNLayer::resetOutValue(MKLDNNMatrixPtr& out,
                                memory::primitive_desc intPD) {
  cvtOutVal_ = nullptr;
  out = MKLDNNMatrix::create(intPD, output_.value);
  extOutVal_ = out;
  if (outputIsOnlyMKLDNN() || isPaddleFormat(extOutVal_->getFormat())) {
    return;
  }
  // need create reorder
  CHECK_GT(bs_ * oc_ * oh_ * ow_, 0);
  extOutVal_ = MKLDNNMatrix::create(
      memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_, output_.value);
  out = MKLDNNMatrix::create(intPD);
  cvtOutVal_ = MKLDNNMatrix::createReorder(out, extOutVal_);
  CHECK(cvtOutVal_) << "should not be empty";
}

void MKLDNNLayer::resetInGrad(MKLDNNMatrixPtr& in,
                              memory::primitive_desc intPD) {
  cvtInGrad_ = nullptr;
  extInGrad_ = nullptr;
  in = nullptr;
  LayerPtr& input = inputLayers_[0];
  if (input->getOutputGrad() == nullptr) {
    // no need input grad
    return;
  }
  CHECK(inputIsOnlyMKLDNN() || input->getOutputMapSize() <= 1)
      << "only support input is MKLDNN layer or only have one output layer";
  // when input is a mkldnn branch node,
  // this layer will save input grad to a internal buffer,
  // and the mkldnn input layer will merge them to actual prev->output_.grad
  const MatrixPtr& inMat =
      input->getOutputMapSize() <= 1 ? input->getOutputGrad() : nullptr;
  in = MKLDNNMatrix::create(intPD, inMat);
  Argument& arg = input->getOutput(this->getName());
  arg.grad = std::dynamic_pointer_cast<Matrix>(in);
T
tensor-tang 已提交
238 239
  CHECK(inVal_);
  CHECK(inVal_->getPrimitiveDesc() == intPD) << "the primitive desc must equal";
T
tensor-tang 已提交
240 241 242 243 244 245 246 247 248
  if (inputIsOnlyMKLDNN()) {
    return;
  }

  extInGrad_ = in;
  if (isPaddleFormat(extInGrad_->getFormat())) {
    return;
  }
  // need create reorder
T
tensor-tang 已提交
249
  // TODO(TJ): add macro definition to simplify it
T
tensor-tang 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  CHECK(extInVal_ != nullptr && isPaddleFormat(extInVal_->getFormat()))
      << "should have external input value and the format must be nchw(nc)";
  extInGrad_ = MKLDNNMatrix::create(extInVal_->getPrimitiveDesc(), inMat);
  CHECK(inVal_ != nullptr && inVal_->getPrimitiveDesc() == intPD)
      << "should have internal input value and primitive desc must equal";
  in = MKLDNNMatrix::create(intPD);
  cvtInGrad_ = MKLDNNMatrix::createReorder(in, extInGrad_);
  CHECK(cvtInGrad_);
}

void MKLDNNLayer::resetOutGrad(MKLDNNMatrixPtr& out,
                               memory::primitive_desc intPD) {
  cvtOutGrad_ = nullptr;
  extOutGrad_ = nullptr;
  out = nullptr;
  MatrixPtr& outMat = output_.grad;
  out = MKLDNNMatrix::create(intPD, outMat);
  resetMergeGrad(out);
  if (outputIsOnlyMKLDNN()) {
    return;
  }
  CHECK_LE(outputMap_.size(), 1U) << "do not support mixed with cpu device";
  extOutGrad_ = out;
  if (isPaddleFormat(extOutGrad_->getFormat())) {
    return;
  }
  // need create reorder
  CHECK(extOutVal_ != nullptr && isPaddleFormat(extOutVal_->getFormat()))
      << "should have external output value and the format must be nchw(nc)";
  extOutGrad_ = MKLDNNMatrix::create(extOutVal_->getPrimitiveDesc(), outMat);
  CHECK(outVal_ != nullptr && outVal_->getPrimitiveDesc() == intPD)
      << "should have internal output value and primitive desc must equal";
  out = MKLDNNMatrix::create(intPD);
  cvtOutGrad_ = MKLDNNMatrix::createReorder(extOutGrad_, out);
  CHECK(cvtOutGrad_);
}

void MKLDNNLayer::resetMergeGrad(MKLDNNMatrixPtr& out) {
  mergeGrad_ = nullptr;
  pipelineMergeGrad_.clear();
  if (outputMap_.size() <= 1 || !outputIsOnlyMKLDNN()) {
    // do not merge when output is not all MKLDNN or only one output
    return;
  }
  CHECK(out) << "should have reset internal ouput grad";
  std::vector<double> scales(outputMap_.size(), 1.0);
  std::vector<memory::primitive_desc> srcPDs;
  std::vector<primitive::at> srcs;
  for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) {
    MKLDNNMatrixPtr src =
        std::dynamic_pointer_cast<MKLDNNMatrix>(it->second->grad);
    CHECK(src) << "should be MKLDNNMatrix";
    auto srcDims = src->getDims();
    auto dstDims = out->getDims();
    CHECK_EQ(srcDims.size(), dstDims.size());
    for (size_t i = 0; i < srcDims.size(); ++i) {
      CHECK_EQ(srcDims[i], dstDims[i]);
    }
308 309
    VLOG(MKLDNN_BASE) << getName() << " has output grad " << it->first
                      << ", format " << src->getFormat();
T
tensor-tang 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    srcPDs.push_back(src->getPrimitiveDesc());
    srcs.push_back(*src);
  }

  // TODO(TJ): remove me when mkldnn sum support different formats
  for (size_t i = 1; i < srcPDs.size(); ++i) {
    CHECK(srcPDs[0] == srcPDs[i]);
  }
  tmpOutGrad_ = out;
  tmpCvt_ = nullptr;
  if (out->getPrimitiveDesc() != srcPDs[0]) {
    tmpOutGrad_ = MKLDNNMatrix::create(srcPDs[0]);
    tmpCvt_ = MKLDNNMatrix::createReorder(tmpOutGrad_, out);
    CHECK(tmpCvt_);
    pipelineMergeGrad_.push_back(*tmpCvt_);
  }

  auto sumPD =
      sum::primitive_desc(tmpOutGrad_->getMemoryDesc(), scales, srcPDs);
  mergeGrad_.reset(new sum(sumPD, srcs, *tmpOutGrad_));
  pipelineMergeGrad_.insert(pipelineMergeGrad_.begin(), *mergeGrad_);
}

}  // namespace paddle