test_elementwise_div_op.py 10.4 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
G
gongweibao 已提交
16 17
import unittest
import numpy as np
18 19
import paddle
import paddle.fluid as fluid
20
import paddle.fluid.core as core
21
from op_test import OpTest, skip_check_grad_ci
G
gongweibao 已提交
22 23 24 25 26


class ElementwiseDivOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
27
        self.dtype = np.float64
W
Wu Yi 已提交
28
        self.init_dtype()
G
gongweibao 已提交
29 30 31 32 33 34
        """ Warning
        CPU gradient check error!
        'X': np.random.random((32,84)).astype("float32"),
        'Y': np.random.random((32,84)).astype("float32")
        """
        self.inputs = {
W
Wu Yi 已提交
35 36
            'X': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype),
            'Y': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
G
gongweibao 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05)

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.05, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))

W
Wu Yi 已提交
54 55 56
    def init_dtype(self):
        pass

G
gongweibao 已提交
57

58 59
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
60 61 62 63
class TestElementwiseDivOp_scalar(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
64
            'X': np.random.uniform(0.1, 1, [20, 3, 4]).astype(np.float64),
65
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64)
66 67 68 69
        }
        self.outputs = {'Out': self.inputs['X'] / self.inputs['Y']}


G
gongweibao 已提交
70 71 72 73
class TestElementwiseDivOp_Vector(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
74 75
            'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
76 77 78 79 80 81 82 83
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_broadcast_0(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
84 85
            'X': np.random.uniform(0.1, 1, [100, 3, 4]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
86 87 88 89 90
        }

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out':
91
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1))
G
gongweibao 已提交
92 93 94 95 96 97 98
        }


class TestElementwiseDivOp_broadcast_1(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
99 100
            'X': np.random.uniform(0.1, 1, [2, 100, 4]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
101 102 103 104 105
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
106
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 100, 1))
G
gongweibao 已提交
107 108 109 110 111 112 113
        }


class TestElementwiseDivOp_broadcast_2(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
114 115
            'X': np.random.uniform(0.1, 1, [2, 3, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
116 117 118 119
        }

        self.outputs = {
            'Out':
120
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100))
G
gongweibao 已提交
121 122 123 124 125 126 127
        }


class TestElementwiseDivOp_broadcast_3(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
128 129
            'X': np.random.uniform(0.1, 1, [2, 10, 12, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [10, 12]).astype("float64")
G
gongweibao 已提交
130 131 132 133 134
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
135
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 10, 12, 1))
G
gongweibao 已提交
136 137 138
        }


139 140 141 142
class TestElementwiseDivOp_broadcast_4(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
143 144
            'X': np.random.uniform(0.1, 1, [2, 3, 50]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 1, 50]).astype("float64")
145 146 147 148 149 150 151 152
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_broadcast_5(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
153 154
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 20]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 1, 20]).astype("float64")
155 156 157 158
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


159 160 161 162
class TestElementwiseDivOp_commonuse_1(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
163 164
            'X': np.random.uniform(0.1, 1, [2, 3, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [1, 1, 100]).astype("float64"),
165 166 167 168 169 170 171 172
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_commonuse_2(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
173 174
            'X': np.random.uniform(0.1, 1, [30, 3, 1, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [30, 1, 4, 1]).astype("float64"),
175 176 177 178 179 180 181 182
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_xsize_lessthan_ysize(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
183 184
            'X': np.random.uniform(0.1, 1, [10, 12]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 10, 12]).astype("float64"),
185 186 187 188 189 190 191
        }

        self.attrs = {'axis': 2}

        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


192 193 194 195 196 197 198
class TestElementwiseDivOp_INT(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.dtype = np.int32
        self.init_dtype()
        self.inputs = {
            'X': np.random.randint(
199
                1, 5, size=[13, 17]).astype(self.dtype),
200
            'Y': np.random.randint(
201
                1, 5, size=[13, 17]).astype(self.dtype)
202 203 204 205 206 207 208 209 210 211
        }
        self.outputs = {'Out': self.inputs['X'] // self.inputs['Y']}

    def test_check_output(self):
        self.check_output()

    def init_dtype(self):
        pass


212 213
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
W
Wu Yi 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
class TestElementwiseDivOpFp16(ElementwiseDivOp):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1)

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=1, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=1, no_grad_set=set('Y'))


230 231 232 233 234 235 236 237 238 239 240 241 242
class TestElementwiseDivBroadcast(unittest.TestCase):
    def test_shape_with_batch_sizes(self):
        with fluid.program_guard(fluid.Program()):
            x_var = fluid.data(
                name='x', dtype='float32', shape=[None, 3, None, None])
            one = 2.
            out = one / x_var
            exe = fluid.Executor(fluid.CPUPlace())
            x = np.random.uniform(0.1, 0.6, (1, 3, 32, 32)).astype("float32")
            out_result, = exe.run(feed={'x': x}, fetch_list=[out])
            self.assertEqual((out_result == (2 / x)).all(), True)


243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
class TestDivOp(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[3], dtype="float32")
            y = fluid.data(name='y', shape=[3], dtype='float32')

            res = fluid.data(name="output", shape=[3], dtype="float32")
            y_1 = paddle.div(x, y, out=res)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data1 = np.array([2, 3, 4], dtype='float32')
            data2 = np.array([1, 5, 2], dtype='float32')
            np_res, np_y_1 = exe.run(feed={'x': data1,
                                           'y': data2},
                                     fetch_list=[res, y_1])

            self.assertEqual((np_res == np_y_1).all(), True)

    def test_out_gpu(self):
        if not fluid.core.is_compiled_with_cuda():
            return
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[3], dtype="float32")
            y = fluid.data(name='y', shape=[3], dtype='float32')

            res = fluid.data(name="output", shape=[3], dtype="float32")
            y_1 = paddle.div(x, y, out=res)

            place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            data1 = np.array([2, 3, 4], dtype='float32')
            data2 = np.array([1, 5, 2], dtype='float32')
            np_res, np_y_1 = exe.run(feed={'x': data1,
                                           'y': data2},
                                     fetch_list=[res, y_1])

            self.assertEqual((np_res == np_y_1).all(), True)

    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')

            y_1 = paddle.div(x, y, name='div_res')
            self.assertEqual(('div_res' in y_1.name), True)

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = paddle.div(x, y)
            np_z = z.numpy()
            z_expected = np.array([2., 0.6, 2.])
            self.assertEqual((np_z == z_expected).all(), True)


G
gongweibao 已提交
302 303
if __name__ == '__main__':
    unittest.main()