test_weight_normalization.py 4.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
guosheng 已提交
17 18 19
import unittest
import numpy
import collections
20 21 22 23
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.initializer import ConstantInitializer
from paddle.fluid.param_attr import WeightNormParamAttr
G
guosheng 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56


class TestWeightNormalization(unittest.TestCase):
    batch_size = 3
    hidden_size = 5
    data_desc = (['x', [10], 0], )

    @classmethod
    def setUpClass(cls):
        cls.set_program()

    @classmethod
    def set_program(cls):
        data = fluid.layers.data(
            name=cls.data_desc[0][0], shape=cls.data_desc[0][1])
        out = fluid.layers.fc(input=data,
                              size=cls.hidden_size,
                              param_attr=WeightNormParamAttr(
                                  dim=None,
                                  name='weight_norm_param',
                                  initializer=ConstantInitializer(1.0)),
                              bias_attr=False,
                              act=None)
        loss = fluid.layers.reduce_sum(out)
        fluid.backward.append_backward(loss=loss)
        cls.fetch_list = [
            'weight_norm_param_g', 'weight_norm_param_v',
            'weight_norm_param_g@GRAD'
        ]

    def run_program(self):
        outputs = []
        places = [core.CPUPlace()]
57
        if core.is_compiled_with_cuda():
G
guosheng 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
            places.append(core.CUDAPlace(0))
        for place in places:
            self.set_inputs(place)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output = exe.run(fluid.default_main_program(),
                             feed=self.inputs,
                             fetch_list=self.fetch_list,
                             return_numpy=False)
            outputs.append(output)
        self.actual_outputs = outputs

    def set_data(self):
        self.data = collections.OrderedDict()
        for desc in self.data_desc:
            data_name = desc[0]
            data_shape = desc[1]
            data_lod_level = desc[2]
            data_lod = []
            for i in range(data_lod_level):
                lod_level_i = numpy.random.randint(
                    low=1,
                    high=5,
81 82
                    size=self.batch_size
                    if i == 0 else sum(lod_level_i)).tolist()
G
guosheng 已提交
83 84
                data_lod.append(lod_level_i)
            data_value = numpy.random.random(
85
                size=[sum(data_lod[-1]) if data_lod else self.batch_size
G
guosheng 已提交
86 87 88 89 90 91 92 93 94
                      ] + data_shape).astype('float32')
            self.data[data_name] = (data_value, data_lod)

    def set_inputs(self, place):
        self.inputs = {}
        for desc in self.data_desc:
            tensor = fluid.Tensor()
            tensor.set(self.data[desc[0]][0], place)
            if self.data[desc[0]][1]:
95
                tensor.set_recursive_sequence_lengths(self.data[desc[0]][1])
G
guosheng 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
            self.inputs[desc[0]] = tensor

    def weight_normalize(self):
        v = numpy.ones((self.data[self.data_desc[0][0]][0].shape[-1],
                        self.hidden_size))
        g = numpy.linalg.norm(v, axis=None, keepdims=True)
        w = g * v / numpy.linalg.norm(v, axis=None, keepdims=True)
        x = self.data[self.data_desc[0][0]][0]
        out = numpy.dot(x, w)
        g_grad = (numpy.dot(x.T, numpy.ones_like(out)) * (v / numpy.linalg.norm(
            v, axis=None, keepdims=True))).sum(axis=None, keepdims=True)
        return g, v, g_grad

    def test_weight_normalization(self):
        self.set_data()
        self.run_program()
        expect_output = self.weight_normalize()
        for actual_output in self.actual_outputs:
            [
                self.assertTrue(
                    numpy.allclose(
117 118
                        numpy.array(actual), expect, atol=0.001))
                for expect, actual in zip(expect_output, actual_output)
G
guosheng 已提交
119 120 121 122 123
            ]


if __name__ == '__main__':
    unittest.main()