no_test_concurrency.py 9.9 KB
Newer Older
T
Thuan Nguyen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

T
Thuan Nguyen 已提交
17 18 19
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
T
Thuan Nguyen 已提交
20
from paddle.fluid import framework, unique_name, layer_helper
T
Thuan Nguyen 已提交
21
from paddle.fluid.executor import Executor
T
Thuan Nguyen 已提交
22
from paddle.fluid.layers import fill_constant, assign, While, elementwise_add, Print
T
Thuan Nguyen 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90


class TestRoutineOp(unittest.TestCase):
    def test_simple_routine(self):
        ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)

        # Create LOD_TENSOR<INT64> and put it into the scope.  This placeholder
        # variable will be filled in and returned by fluid.channel_recv
        result = self._create_tensor('return_value',
                                     core.VarDesc.VarType.LOD_TENSOR,
                                     core.VarDesc.VarType.INT64)

        with fluid.Go():
            input_value = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.FP64, value=1234)
            fluid.channel_send(ch, input_value)

        result, status = fluid.channel_recv(ch, result)
        fluid.channel_close(ch)

        cpu = core.CPUPlace()
        exe = Executor(cpu)

        outs = exe.run(fetch_list=[result])
        self.assertEqual(outs[0], 1234)

    def test_daisy_chain(self):
        '''
        Mimics classic Daisy-chain test:  https://talks.golang.org/2012/concurrency.slide#39
        '''
        n = 100

        leftmost = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
        left = leftmost

        # TODO(thuan): Use fluid.While() after scope capture is implemented.
        # https://github.com/PaddlePaddle/Paddle/issues/8502
        for i in range(n):
            right = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
            with fluid.Go():
                one_tensor = self._create_one_dim_tensor(1)
                result = self._create_tensor('return_value',
                                             core.VarDesc.VarType.LOD_TENSOR,
                                             core.VarDesc.VarType.INT64)

                result, status = fluid.channel_recv(right, result)
                one_added = fluid.layers.elementwise_add(x=one_tensor, y=result)
                fluid.channel_send(left, one_added)
            left = right

        # Trigger the channel propagation by sending a "1" to rightmost channel
        with fluid.Go():
            one_tensor = self._create_one_dim_tensor(1)
            fluid.channel_send(right, one_tensor)

        leftmost_result = self._create_tensor('return_value',
                                              core.VarDesc.VarType.LOD_TENSOR,
                                              core.VarDesc.VarType.INT64)
        leftmost_result, status = fluid.channel_recv(leftmost, leftmost_result)

        cpu = core.CPUPlace()
        exe = Executor(cpu)
        leftmost_data = exe.run(fetch_list=[leftmost_result])

        # The leftmost_data should be equal to the number of channels + 1
        self.assertEqual(leftmost_data[0][0], n + 1)

    def _create_one_dim_tensor(self, value):
T
Thuan Nguyen 已提交
91
        one_dim_tensor = fill_constant(shape=[1], dtype='int', value=value)
T
Thuan Nguyen 已提交
92 93 94 95 96 97 98
        one_dim_tensor.stop_gradient = True
        return one_dim_tensor

    def _create_tensor(self, name, type, dtype):
        return framework.default_main_program().current_block().create_var(
            name=unique_name.generate(name), type=type, dtype=dtype)

T
Thuan Nguyen 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    def _create_persistable_tensor(self, name, type, dtype):
        return framework.default_main_program().current_block().create_var(
            name=unique_name.generate(name),
            type=type,
            dtype=dtype,
            persistable=True)

    def test_select(self):
        with framework.program_guard(framework.Program()):
            ch1 = fluid.make_channel(
                dtype=core.VarDesc.VarType.LOD_TENSOR, capacity=1)

            result1 = self._create_tensor('return_value',
                                          core.VarDesc.VarType.LOD_TENSOR,
                                          core.VarDesc.VarType.FP64)

            input_value = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.FP64, value=10)

            with fluid.Select() as select:
                with select.case(fluid.channel_send, ch1, input_value):
                    # Execute something.
                    pass

                with select.default():
                    pass

            # This should not block because we are using a buffered channel.
            result1, status = fluid.channel_recv(ch1, result1)
            fluid.channel_close(ch1)

            cpu = core.CPUPlace()
            exe = Executor(cpu)

            result = exe.run(fetch_list=[result1])
            self.assertEqual(result[0][0], 10)

    def test_fibonacci(self):
        """
        Mimics Fibonacci Go example: https://tour.golang.org/concurrency/5
        """
        with framework.program_guard(framework.Program()):
            quit_ch_input_var = self._create_persistable_tensor(
                'quit_ch_input', core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.INT32)
            quit_ch_input = fill_constant(
                shape=[1],
                dtype=core.VarDesc.VarType.INT32,
                value=0,
                out=quit_ch_input_var)

            result = self._create_persistable_tensor(
                'result', core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.INT32)
            fill_constant(
                shape=[1],
                dtype=core.VarDesc.VarType.INT32,
                value=0,
                out=result)

            x = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.INT32, value=0)
            y = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.INT32, value=1)

            while_cond = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.BOOL, value=True)

            while_false = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.BOOL, value=False)

            x_tmp = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.INT32, value=0)

            def fibonacci(channel, quit_channel):
                while_op = While(cond=while_cond)
                with while_op.block():
                    result2 = fill_constant(
                        shape=[1], dtype=core.VarDesc.VarType.INT32, value=0)

                    with fluid.Select() as select:
180 181
                        with select.case(
                                fluid.channel_send, channel, x, is_copy=True):
T
Thuan Nguyen 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
                            assign(input=x, output=x_tmp)
                            assign(input=y, output=x)
                            assign(elementwise_add(x=x_tmp, y=y), output=y)

                        with select.case(fluid.channel_recv, quit_channel,
                                         result2):
                            # Quit
                            helper = layer_helper.LayerHelper('assign')
                            helper.append_op(
                                type='assign',
                                inputs={'X': [while_false]},
                                outputs={'Out': [while_cond]})

            ch1 = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
            quit_ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)

            with fluid.Go():
199
                for i in range(10):
T
Thuan Nguyen 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
                    fluid.channel_recv(ch1, result)
                    Print(result)

                fluid.channel_send(quit_ch, quit_ch_input)

            fibonacci(ch1, quit_ch)

            fluid.channel_close(ch1)
            fluid.channel_close(quit_ch)

            cpu = core.CPUPlace()
            exe = Executor(cpu)

            exe_result = exe.run(fetch_list=[result])
            self.assertEqual(exe_result[0][0], 34)

216 217 218 219 220 221 222 223 224 225 226 227 228 229
    def test_ping_pong(self):
        """
        Mimics Ping Pong example: https://gobyexample.com/channel-directions
        """
        with framework.program_guard(framework.Program()):
            result = self._create_tensor('return_value',
                                         core.VarDesc.VarType.LOD_TENSOR,
                                         core.VarDesc.VarType.FP64)

            ping_result = self._create_tensor('ping_return_value',
                                              core.VarDesc.VarType.LOD_TENSOR,
                                              core.VarDesc.VarType.FP64)

            def ping(ch, message):
230
                fluid.channel_send(ch, message, is_copy=True)
231 232 233

            def pong(ch1, ch2):
                fluid.channel_recv(ch1, ping_result)
234
                fluid.channel_send(ch2, ping_result, is_copy=True)
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

            pings = fluid.make_channel(
                dtype=core.VarDesc.VarType.LOD_TENSOR, capacity=1)
            pongs = fluid.make_channel(
                dtype=core.VarDesc.VarType.LOD_TENSOR, capacity=1)

            msg = fill_constant(
                shape=[1], dtype=core.VarDesc.VarType.FP64, value=9)

            ping(pings, msg)
            pong(pings, pongs)

            fluid.channel_recv(pongs, result)

            fluid.channel_close(pings)
            fluid.channel_close(pongs)

            cpu = core.CPUPlace()
            exe = Executor(cpu)

            exe_result = exe.run(fetch_list=[result])
            self.assertEqual(exe_result[0][0], 9)

T
Thuan Nguyen 已提交
258 259 260

if __name__ == '__main__':
    unittest.main()