adam_op.h 18.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yang Yu 已提交
16
#include <math.h>  // for sqrt in CPU and CUDA
17
#include <Eigen/Dense>
S
sneaxiy 已提交
18
#include <unordered_map>
S
sneaxiy 已提交
19
#include <vector>
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/op_registry.h"
Q
Qiao Longfei 已提交
21
#include "paddle/fluid/framework/threadpool.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/operators/detail/safe_ref.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/operators/math/algorithm.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
26 27 28 29

namespace paddle {
namespace operators {

T
wip  
typhoonzero 已提交
30 31
namespace scatter = paddle::operators::math::scatter;

32 33 34 35 36 37
struct GPUAdam;
struct CPUAdam;

template <typename T, typename Flavour>
struct AdamFunctor;

Y
Yang Yu 已提交
38
template <typename T>
39
struct AdamFunctor<T, GPUAdam> {
Y
Yang Yu 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
Y
Yang Yu 已提交
53
  T* param_out_;
Y
Yang Yu 已提交
54 55 56

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
Y
Yang Yu 已提交
57 58
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
Y
Yang Yu 已提交
59 60 61 62 63 64 65 66 67 68 69
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
Y
Yang Yu 已提交
70 71
        param_(param),
        param_out_(param_out) {}
Y
Yang Yu 已提交
72

Y
Yang Yu 已提交
73
  inline HOSTDEVICE void operator()(size_t i) const {
Y
Yang Yu 已提交
74 75 76 77 78 79 80
    // Merge all memory access together.
    T g = grad_[i];
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
Y
Yang Yu 已提交
81
    T p = param_[i];
Y
Yang Yu 已提交
82 83

    // Calculation
Y
Yang Yu 已提交
84
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
85

Y
Yang Yu 已提交
86 87
    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
Y
Yang Yu 已提交
88
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
Y
Yang Yu 已提交
89 90 91 92

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
Y
Yang Yu 已提交
93
    param_out_[i] = p;
Y
Yang Yu 已提交
94 95 96
  }
};

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
template <typename T>
struct AdamFunctor<T, CPUAdam> {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out) {}

  void operator()(size_t numel) const {
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> g{
        grad_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom1{
        moment1_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom2{
        moment2_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> param{
        param_, static_cast<Eigen::Index>(numel)};

    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> param_out{
        param_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment1_out{
        moment1_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment2_out{
        moment2_out_, static_cast<Eigen::Index>(numel)};

    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    moment1_out = beta1_ * mom1 + (1 - beta1_) * g;
    moment2_out = beta2_ * mom2 + (1 - beta2_) * g * g;
    param_out = param - lr * (moment1_out / (moment2_out.sqrt() + epsilon_));
  }
};

162 163 164
template <typename T, typename Flavour>
struct SparseAdamFunctor;

T
wip  
typhoonzero 已提交
165
template <typename T>
M
minqiyang 已提交
166
struct SparseAdamFunctor<T, GPUAdam> {
T
wip  
typhoonzero 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
S
sneaxiy 已提交
184
  int64_t row_count_;
Q
Qiao Longfei 已提交
185
  bool lazy_mode_;
T
wip  
typhoonzero 已提交
186 187 188 189 190

  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
Q
Qiao Longfei 已提交
191
                    int64_t row_numel, int64_t row_count, bool lazy_mode)
T
wip  
typhoonzero 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
S
sneaxiy 已提交
206
        row_numel_(row_numel),
Q
Qiao Longfei 已提交
207
        row_count_(row_count),
Q
Qiao Longfei 已提交
208
        lazy_mode_(lazy_mode) {}
S
sneaxiy 已提交
209

Q
Qiao Longfei 已提交
210
  inline HOSTDEVICE void adam_update(size_t i, T g) const {
S
sneaxiy 已提交
211 212 213 214
    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
T
typhoonzero 已提交
215 216
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
S
sneaxiy 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
T
wip  
typhoonzero 已提交
230
  }
Q
Qiao Longfei 已提交
231 232 233 234

  inline HOSTDEVICE void operator()(size_t i) const {
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
Q
Qiao Longfei 已提交
235 236 237
    if (lazy_mode_ && row_idx < 0) {
      return;
    } else {
Q
Qiao Longfei 已提交
238 239 240
      T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_] : 0;
      adam_update(i, g);
    }
Q
Qiao Longfei 已提交
241
  }
T
wip  
typhoonzero 已提交
242 243
};

M
minqiyang 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
template <typename T>
struct SparseAdamFunctor<T, CPUAdam> {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
  int64_t row_count_;

  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
269
                    int64_t row_numel, int64_t row_count, bool lazy_mode)
M
minqiyang 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
        row_numel_(row_numel),
        row_count_(row_count) {}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
  inline HOSTDEVICE void adam_update(size_t i, T g) const {
    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
  }

M
minqiyang 已提交
309 310 311 312 313 314
  inline void operator()(size_t numel) const {
    // lr could be reuse
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
S
sneaxiy 已提交
315
    int64_t row_count = static_cast<int64_t>(numel / row_numel_);
M
minqiyang 已提交
316

S
sneaxiy 已提交
317
    for (int64_t i = 0, j = 0; i != row_count; ++i) {
M
minqiyang 已提交
318
      if (i == *(rows_ + j)) {
S
sneaxiy 已提交
319
        for (int64_t k = 0; k != row_numel_; ++k) {
M
Fix bug  
minqiyang 已提交
320
          T g = grad_[j * row_numel_ + k];
M
minqiyang 已提交
321
          adam_update(i * row_numel_ + k, g);
M
Fix bug  
minqiyang 已提交
322
        }
M
minqiyang 已提交
323 324
        ++j;
      } else {
S
sneaxiy 已提交
325
        for (int64_t k = 0; k != row_numel_; ++k) {
M
Fix bug  
minqiyang 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338
          T mom1 = moment1_[i * row_numel_ + k];
          T mom2 = moment2_[i * row_numel_ + k];
          T p = param_[i * row_numel_ + k];

          mom1 = beta1_ * mom1;
          mom2 = beta2_ * mom2;

          p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
          // Write back to global memory
          moment1_out_[i * row_numel_ + k] = mom1;
          moment2_out_[i * row_numel_ + k] = mom2;
          param_out_[i * row_numel_ + k] = p;
        }
M
minqiyang 已提交
339 340 341 342 343
      }
    }
  }
};

Q
QI JUN 已提交
344
template <typename DeviceContext, typename T>
345 346 347
class AdamOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
348 349 350 351
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
                   "The Var(%s)'s type should be LoDTensor, "
                   "but the received is %s",
S
sneaxiy 已提交
352 353
                   ctx.Inputs("Param").front(),
                   framework::ToTypeName(param_var->Type()));
C
chengduo 已提交
354

Y
Yang Yu 已提交
355 356
    using paddle::framework::LoDTensor;
    using paddle::operators::detail::Ref;
357

358 359
    int64_t min_row_size_to_use_multithread =
        ctx.Attr<int64_t>("min_row_size_to_use_multithread");
Q
Qiao Longfei 已提交
360
    bool lazy_mode = ctx.Attr<bool>("lazy_mode");
361 362 363
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
Y
Yang Yu 已提交
364
    auto& param = Ref(ctx.Input<LoDTensor>("Param"), "Must set Param");
T
wip  
typhoonzero 已提交
365 366
    // auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
    auto* grad_var = ctx.InputVar("Grad");
Y
Yang Yu 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    auto& mom1 = Ref(ctx.Input<LoDTensor>("Moment1"), "Must set Moment1");
    auto& mom2 = Ref(ctx.Input<LoDTensor>("Moment2"), "Must set Moment2");
    auto& lr =
        Ref(ctx.Input<LoDTensor>("LearningRate"), "Must set LearningRate");

    auto& beta1_pow =
        Ref(ctx.Input<LoDTensor>("Beta1Pow"), "Must set Beta1Pow");
    auto& beta2_pow =
        Ref(ctx.Input<LoDTensor>("Beta2Pow"), "Must set Beta2Pow");

    auto& param_out =
        Ref(ctx.Output<LoDTensor>("ParamOut"), "Must set ParamOut");
    auto& mom1_out =
        Ref(ctx.Output<LoDTensor>("Moment1Out"), "Must set Moment1Out");
    auto& mom2_out =
        Ref(ctx.Output<LoDTensor>("Moment2Out"), "Must set Moment1Out");

T
wip  
typhoonzero 已提交
384 385
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

      if (platform::is_cpu_place(ctx.GetPlace())) {
        AdamFunctor<T, CPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));
        functor(param.numel());
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        AdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));

        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
      }
T
wip  
typhoonzero 已提交
414 415 416
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto& grad =
          Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad");
417
      if (grad.rows().size() == 0) {
M
minqiyang 已提交
418
        VLOG(3) << "grad row size is 0!!";
419 420
        return;
      }
S
sneaxiy 已提交
421 422 423 424 425 426 427 428 429 430

      std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
      bool is_strict_sorted = true;
      for (size_t i = 1; i < cpu_rows.size(); ++i) {
        if (cpu_rows[i - 1] >= cpu_rows[i]) {
          is_strict_sorted = false;
          break;
        }
      }

S
sneaxiy 已提交
431
      framework::SelectedRows tmp_grad_merge;
S
sneaxiy 已提交
432 433 434 435 436 437 438 439
      const framework::SelectedRows* grad_merge_ptr;
      if (is_strict_sorted) {
        grad_merge_ptr = &grad;
      } else {
        // merge duplicated rows if any.
        // The rows of grad_merge have been sorted inside MergeAdd functor
        scatter::MergeAdd<DeviceContext, T> merge_func;
        merge_func(ctx.template device_context<DeviceContext>(), grad,
S
sneaxiy 已提交
440 441
                   &tmp_grad_merge, true);
        grad_merge_ptr = &tmp_grad_merge;
S
sneaxiy 已提交
442 443 444
      }

      auto& grad_merge = *grad_merge_ptr;
T
wip  
typhoonzero 已提交
445
      auto& grad_tensor = grad_merge.value();
T
wip  
typhoonzero 已提交
446
      const T* grad_data = grad_tensor.template data<T>();
S
sneaxiy 已提交
447
      const int64_t* rows = grad_merge.rows().Data(ctx.GetPlace());
T
wip  
typhoonzero 已提交
448
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
T
wip  
typhoonzero 已提交
449

M
minqiyang 已提交
450 451
      if (platform::is_cpu_place(ctx.GetPlace())) {
        SparseAdamFunctor<T, CPUAdam> functor(
Q
Qiao Longfei 已提交
452 453 454 455 456 457 458 459
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad_data, param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
            grad_merge.rows().size(), lazy_mode);
460 461 462 463 464 465 466 467 468 469
        if (lazy_mode) {
          VLOG(3) << "run cpu lazy mode";
          size_t row_count = grad_merge.rows().size();
          std::vector<int64_t> cpu_rows(grad_merge.rows());
          for (size_t row_index = 0; row_index < row_count; ++row_index) {
            for (size_t offset = 0; offset < row_numel; ++offset) {
              size_t i = cpu_rows[row_index] * row_numel + offset;
              functor.adam_update(i, grad_data[row_index * row_numel + offset]);
            }
          }
470 471
        }
#ifndef _WIN32
S
sneaxiy 已提交
472
        else if (FLAGS_inner_op_parallelism > 1 &&  // NOLINT
473 474
                 min_row_size_to_use_multithread > 0 &&
                 param.dims()[0] > min_row_size_to_use_multithread) {
475 476
          VLOG(3) << "use multi thread, inner_op_parallelism="
                  << FLAGS_inner_op_parallelism
477
                  << " min_row_size_to_use_multithread="
478
                  << min_row_size_to_use_multithread;
Q
Qiao Longfei 已提交
479
          if (FLAGS_inner_op_parallelism > 10) {
480 481
            VLOG(1) << "FLAGS_inner_op_parallelism "
                    << FLAGS_inner_op_parallelism << " is two large!";
Q
Qiao Longfei 已提交
482
          }
483 484 485
          auto& grad_rows = grad_merge.rows();
          std::unordered_map<size_t, int> row_id_to_grad_row_offset;
          size_t param_row_count = param.numel() / row_numel;
Q
Qiao Longfei 已提交
486
          if (param_row_count < 1000) {
487 488 489
            VLOG(1) << "param_row_count should be larger then 1000 to use "
                       "multi thread, currently "
                    << param_row_count;
Q
Qiao Longfei 已提交
490
          }
491 492
          for (size_t i = 0; i < grad_rows.size(); ++i) {
            row_id_to_grad_row_offset[grad_rows[i]] = i;
Q
Qiao Longfei 已提交
493
          }
494
          std::vector<std::future<void>> fs;
Q
Qiao Longfei 已提交
495
          int64_t line_in_each_thread =
Q
Qiao Longfei 已提交
496
              param_row_count / FLAGS_inner_op_parallelism + 1;
497 498 499
          for (int i = 0; i < FLAGS_inner_op_parallelism; ++i) {
            int64_t start = i * line_in_each_thread;
            int64_t end = (i + 1) * line_in_each_thread;
S
sneaxiy 已提交
500
            if (start >= static_cast<int64_t>(param_row_count)) {
Q
Qiao Longfei 已提交
501 502
              break;
            }
S
sneaxiy 已提交
503 504
            if (end > static_cast<int64_t>(param_row_count)) {
              end = static_cast<int64_t>(param_row_count);
Q
Qiao Longfei 已提交
505
            }
Q
Qiao Longfei 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
            fs.push_back(
                framework::Async([&functor, &row_id_to_grad_row_offset,
                                  &grad_data, row_numel, start, end]() {
                  for (int64_t row_id = start; row_id < end; ++row_id) {
                    auto iter = row_id_to_grad_row_offset.find(row_id);
                    if (iter != row_id_to_grad_row_offset.end()) {
                      for (size_t row_offset = 0U; row_offset < row_numel;
                           ++row_offset) {
                        functor.adam_update(
                            row_id * row_numel + row_offset,
                            grad_data[iter->second * row_numel + row_offset]);
                      }
                    } else {
                      for (size_t row_offset = 0U; row_offset < row_numel;
                           ++row_offset) {
                        functor.adam_update(row_id * row_numel + row_offset, 0);
                      }
                    }
Q
Qiao Longfei 已提交
524 525
                  }
                }));
Q
Qiao Longfei 已提交
526
          }
527
          for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
528
        }
S
sneaxiy 已提交
529 530
#endif          // !_WIN32
        else {  // NOLINT
531
          functor(param.numel());
Q
Qiao Longfei 已提交
532
        }
M
minqiyang 已提交
533 534 535 536 537 538 539 540 541
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        SparseAdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad_data, param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
542
            grad_merge.rows().size(), lazy_mode);
M
minqiyang 已提交
543 544

        // FIXME(minqiyang): remove BinarySearch in GPU later
Q
Qiao Longfei 已提交
545 546 547 548 549
        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
      }
T
wip  
typhoonzero 已提交
550 551 552
    } else {
      PADDLE_THROW("Variable type not supported by adam_op");
    }
553 554 555 556 557
  }
};

}  // namespace operators
}  // namespace paddle