trace_op.cc 7.8 KB
Newer Older
L
Li Fuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/trace_op.h"
16
#include "paddle/fluid/framework/op_version_registry.h"
L
Li Fuchen 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

class TraceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::NotFound("Input of TraceOp is not found."));

    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::NotFound("Output of TraceOp is not found."));

34 35
    int dim1 = ctx->Attrs().Get<int>("axis1");
    int dim2 = ctx->Attrs().Get<int>("axis2");
L
Li Fuchen 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

    auto x_dims = ctx->GetInputDim("Input");

    int dim1_ = dim1 < 0 ? x_dims.size() + dim1 : dim1;
    int dim2_ = dim2 < 0 ? x_dims.size() + dim2 : dim2;

    PADDLE_ENFORCE_GE(
        x_dims.size(), 2,
        platform::errors::OutOfRange(
            "trace requires an tensor of at least two dimensions"));
    PADDLE_ENFORCE_LT(
        dim1_, x_dims.size(),
        platform::errors::OutOfRange(
            "Attr(dim1) is out of range (expected to be in range of [%ld, "
            "%ld], but got %ld).",
            -(x_dims.size()), (x_dims.size() - 1), dim1));
    PADDLE_ENFORCE_LT(
        dim2_, x_dims.size(),
        platform::errors::OutOfRange(
            "Attr(dim2) is out of range (expected to be in range of [%ld, "
            "%ld], but got %ld).",
            -(x_dims.size()), (x_dims.size() - 1), dim2));
    PADDLE_ENFORCE_NE(dim1_, dim2_,
                      platform::errors::InvalidArgument(
                          "The dimensions should not be identical "
                          "%ld vs %ld.",
                          dim1, dim2));

    auto sizes = vectorize(x_dims);
    if (x_dims.size() == 2) {
      sizes.clear();
      sizes.push_back(1);
    } else {
      sizes.erase(sizes.begin() + std::max(dim1_, dim2_));
      sizes.erase(sizes.begin() + std::min(dim1_, dim2_));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(sizes));
  }
};

class TraceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input",
             "(Tensor) The input tensor, from which the diagonals are taken.");
    AddOutput("Out", "(Tensor) the sum along diagonals of the input tensor");
    AddAttr<int>(
        "offset",
        R"DOC((int, default 0), offset of the diagonal from the main diagonal. Can be both positive and negative. Defaults to 0.
        )DOC")
        .SetDefault(0);
    AddAttr<int>(
88 89 90
        "axis1",
        R"DOC((int, default 0), the first axis of the 2-D planes from which the diagonals should be taken. 
        Can be either positive or negative. Default: 0.
L
Li Fuchen 已提交
91
        )DOC")
92
        .SetDefault(0);
L
Li Fuchen 已提交
93
    AddAttr<int>(
94 95 96
        "axis2",
        R"DOC((int, default 1), the second axis of the 2-D planes from which the diagonals should be taken. 
        Can be either positive or negative. Default: 1.
L
Li Fuchen 已提交
97
        )DOC")
98
        .SetDefault(1);
L
Li Fuchen 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    AddComment(R"DOC(
Trace Operator.
Return the sum along diagonals of the input tensor.
The behavior of this operator is similar to how `numpy.trace` works.

If Input is 2-D, returns the sum of diagonal. 
If Input has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
the 2-D planes specified by dim1 and dim2.

)DOC");
  }
};
class TraceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::NotFound("Input(Input) of TraceOp is not found."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("Input")), true,
                      platform::errors::NotFound(
                          "Output(Input@GRAD) of TraceGradOp is not found."));
    ctx->SetOutputDim(framework::GradVarName("Input"),
                      ctx->GetInputDim("Input"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }
};

template <typename T>
class TraceGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("trace_grad");
    grad_op->SetInput("Input", this->Input("Input"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

151
DECLARE_NO_NEED_BUFFER_VARS_INFERER(TraceGradNoNeedBufferVarsInferer, "Input");
L
Li Fuchen 已提交
152 153 154 155 156 157 158 159 160 161

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(trace, ops::TraceOp, ops::TraceOpMaker,
                  ops::TraceGradOpMaker<paddle::framework::OpDesc>,
                  ops::TraceGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(trace_grad, ops::TraceOpGrad,
162
                  ops::TraceGradNoNeedBufferVarsInferer);
L
Li Fuchen 已提交
163 164 165 166
REGISTER_OP_CPU_KERNEL(
    trace, ops::TraceKernel<paddle::platform::CPUDeviceContext, int>,
    ops::TraceKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TraceKernel<paddle::platform::CPUDeviceContext, double>,
167 168 169 170 171
    ops::TraceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::TraceKernel<paddle::platform::CPUDeviceContext,
                     paddle::platform::complex64>,
    ops::TraceKernel<paddle::platform::CPUDeviceContext,
                     paddle::platform::complex128>);
L
Li Fuchen 已提交
172 173 174 175
REGISTER_OP_CPU_KERNEL(
    trace_grad, ops::TraceGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::TraceGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TraceGradKernel<paddle::platform::CPUDeviceContext, double>,
176 177 178 179 180
    ops::TraceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::TraceGradKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex64>,
    ops::TraceGradKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex128>);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(trace)
    .AddCheckpoint(
        R"ROC(Upgrade trace add a new attribute [axis2])ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("axis1",
                     "The added attribute 'axis1' is not yet registered.",
                     std::vector<float>{0.0f})
            .NewAttr("axis2",
                     "The added attribute 'axis2' is not yet registered.",
                     std::vector<float>{1.0f})
            .DeleteAttr("dim1",
                        "The attribute 'dim1' is not recommend according to "
                        "the specification 2.0.")
            .DeleteAttr("dim2",
                        "The attribute 'dim2' is not recommend according to "
                        "the specification 2.0."));