activation_op.cc 17.2 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
D
dzhwinter 已提交
16
#include <string>
K
Krzysztof Binias 已提交
17
#include "paddle/fluid/operators/mkldnn_activation_op.h"
Q
qijun 已提交
18 19 20 21

namespace paddle {
namespace operators {

Y
Yu Yang 已提交
22 23 24 25 26
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)               \
  class OP_NAME##OpMaker                                                \
      : public ::paddle::framework::OpProtoAndCheckerMaker {            \
   public:                                                              \
    void Make() override {                                              \
X
Xin Pan 已提交
27
      AddInput("X", "Input of " #OP_NAME " operator");                  \
28
      AddOutput("Out", "Output of " #OP_NAME " operator").Reuse("X");   \
Y
Yu Yang 已提交
29 30 31
      AddAttr<bool>("use_mkldnn",                                       \
                    "(bool, default false) Only used in mkldnn kernel") \
          .SetDefault(false);                                           \
X
Xin Pan 已提交
32
      AddComment(OP_COMMENT);                                           \
Y
Yu Yang 已提交
33
    }                                                                   \
D
dzhwinter 已提交
34
  }
D
dzhwinter 已提交
35 36 37 38 39 40 41 42 43

#define REGISTER_ACTIVATION_OP_GRAD_MAKER(OP_NAME, KERNEL_TYPE)              \
  class OP_NAME##GradMaker                                                   \
      : public ::paddle::framework::SingleGradOpDescMaker {                  \
   public:                                                                   \
    using ::paddle::framework::SingleGradOpDescMaker::SingleGradOpDescMaker; \
                                                                             \
   protected:                                                                \
    std::unique_ptr<::paddle::framework::OpDesc> Apply() const override {    \
44
      auto* op = new ::paddle::framework::OpDesc();                          \
D
dzhwinter 已提交
45 46 47 48 49 50 51 52 53 54
      op->SetType(#KERNEL_TYPE "_grad");                                     \
      op->SetInput("Out", Output("Out"));                                    \
      op->SetInput(::paddle::framework::GradVarName("Out"),                  \
                   OutputGrad("Out"));                                       \
                                                                             \
      op->SetAttrMap(Attrs());                                               \
                                                                             \
      op->SetOutput(::paddle::framework::GradVarName("X"), InputGrad("X"));  \
      return std::unique_ptr<::paddle::framework::OpDesc>(op);               \
    }                                                                        \
D
dzhwinter 已提交
55
  }
D
dzhwinter 已提交
56

57 58 59 60
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
61 62

  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
63 64 65 66 67
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
68
    layout = framework::DataLayout::kMKLDNN;
69 70 71 72 73 74 75
  }
#endif
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::Tensor>(name)->type()),
      ctx.GetPlace(), layout, library);
}

Q
qijun 已提交
76 77 78 79
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

80
  void InferShape(framework::InferShapeContext* ctx) const override {
F
fengjiayi 已提交
81 82
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
83
  }
84 85 86 87 88

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
89 90
};

Q
qijun 已提交
91 92 93 94
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

95
  void InferShape(framework::InferShapeContext* ctx) const override {
F
fengjiayi 已提交
96
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Out"));
Q
qijun 已提交
97
  }
98 99 100 101 102

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "Out");
  }
Q
qijun 已提交
103 104
};

Q
qiaolongfei 已提交
105
__attribute__((unused)) constexpr char SigmoidDoc[] = R"DOC(
106
Sigmoid Activation Operator
K
Kexin Zhao 已提交
107

F
fengjiayi 已提交
108
$$out = \frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
109

D
dzhwinter 已提交
110
)DOC";
Q
qijun 已提交
111

Q
qiaolongfei 已提交
112
__attribute__((unused)) constexpr char LogSigmoidDoc[] = R"DOC(
113
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
114

F
fengjiayi 已提交
115
$$out = \log \frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
116

D
dzhwinter 已提交
117
)DOC";
118

Q
qiaolongfei 已提交
119
__attribute__((unused)) constexpr char ExpDoc[] = R"DOC(
K
kexinzhao 已提交
120
Exp Activation Operator.
K
Kexin Zhao 已提交
121

F
fengjiayi 已提交
122
$out = e^x$
K
Kexin Zhao 已提交
123

D
dzhwinter 已提交
124
)DOC";
Q
qijun 已提交
125

Q
qiaolongfei 已提交
126
__attribute__((unused)) constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
127
Relu Activation Operator.
K
Kexin Zhao 已提交
128

F
fengjiayi 已提交
129
$out = \max(x, 0)$
K
Kexin Zhao 已提交
130

D
dzhwinter 已提交
131
)DOC";
K
Kexin Zhao 已提交
132

Q
qiaolongfei 已提交
133
__attribute__((unused)) constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
134
Tanh Activation Operator.
K
Kexin Zhao 已提交
135

F
fengjiayi 已提交
136
$$out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
137

D
dzhwinter 已提交
138
)DOC";
139

Q
qiaolongfei 已提交
140
__attribute__((unused)) constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
141
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
142

F
fengjiayi 已提交
143
$$out = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
144

D
dzhwinter 已提交
145
)DOC";
K
Kexin Zhao 已提交
146

Q
qiaolongfei 已提交
147
__attribute__((unused)) constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
148
Sqrt Activation Operator.
K
Kexin Zhao 已提交
149

F
fengjiayi 已提交
150
$out = \sqrt{x}$
K
Kexin Zhao 已提交
151

D
dzhwinter 已提交
152
)DOC";
153

Q
qiaolongfei 已提交
154
__attribute__((unused)) constexpr char AbsDoc[] = R"DOC(
K
kexinzhao 已提交
155
Abs Activation Operator.
K
Kexin Zhao 已提交
156

F
fengjiayi 已提交
157
$out = |x|$
K
Kexin Zhao 已提交
158

D
dzhwinter 已提交
159
)DOC";
160

Q
qiaolongfei 已提交
161
__attribute__((unused)) constexpr char CeilDoc[] = R"DOC(
D
dzhwinter 已提交
162 163
Ceil Activation Operator.

F
fengjiayi 已提交
164
$out = ceil(x)$
D
dzhwinter 已提交
165

D
dzhwinter 已提交
166
)DOC";
D
dzhwinter 已提交
167

Q
qiaolongfei 已提交
168
__attribute__((unused)) constexpr char FloorDoc[] = R"DOC(
D
dzhwinter 已提交
169 170
Floor Activation Operator.

F
fengjiayi 已提交
171
$out = floor(x)$
D
dzhwinter 已提交
172

D
dzhwinter 已提交
173
)DOC";
D
dzhwinter 已提交
174

Q
qiaolongfei 已提交
175
__attribute__((unused)) constexpr char CosDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
176
Cosine Activation Operator.
C
add cos  
chengduoZH 已提交
177 178 179

$out = cos(x)$

D
dzhwinter 已提交
180
)DOC";
C
add cos  
chengduoZH 已提交
181

Q
qiaolongfei 已提交
182
__attribute__((unused)) constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
183 184 185 186
Sine Activation Operator.

$out = sin(x)$

D
dzhwinter 已提交
187
)DOC";
C
add sin  
chengduoZH 已提交
188

Q
qiaolongfei 已提交
189
__attribute__((unused)) constexpr char RoundDoc[] = R"DOC(
D
dzhwinter 已提交
190 191
Round Activation Operator.

F
fengjiayi 已提交
192
$out = [x]$
D
dzhwinter 已提交
193

D
dzhwinter 已提交
194
)DOC";
D
dzhwinter 已提交
195

Q
qiaolongfei 已提交
196
__attribute__((unused)) constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
197
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
198

F
fengjiayi 已提交
199
$$out = \frac{1}{x}$$
K
Kexin Zhao 已提交
200

D
dzhwinter 已提交
201
)DOC";
202

Q
qiaolongfei 已提交
203
__attribute__((unused)) constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
204
Log Activation Operator.
K
Kexin Zhao 已提交
205

F
fengjiayi 已提交
206
$out = \ln(x)$
K
Kexin Zhao 已提交
207 208 209

Natural logarithm of x.

D
dzhwinter 已提交
210 211
)DOC";

Q
qiaolongfei 已提交
212
__attribute__((unused)) constexpr char SquareDoc[] = R"DOC(
D
dzhwinter 已提交
213 214 215
Square Activation Operator.

$out = x^2$
216

D
dzhwinter 已提交
217 218
)DOC";

Q
qiaolongfei 已提交
219
__attribute__((unused)) constexpr char SoftplusDoc[] = R"DOC(
D
dzhwinter 已提交
220 221 222 223 224 225
Softplus Activation Operator.

$out = \ln(1 + e^{x})$

)DOC";

Q
qiaolongfei 已提交
226
__attribute__((unused)) constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
227 228 229 230 231 232 233
Softsign Activation Operator.

$$out = \frac{x}{1 + |x|}$$

)DOC";

class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
234
 public:
Y
Yu Yang 已提交
235
  void Make() override {
D
dzhwinter 已提交
236 237 238
    AddInput("X", "Input of LeakyRelu operator");
    AddOutput("Out", "Output of LeakyRelu operator");
    AddAttr<float>("alpha", "The small negative slope").SetDefault(0.02f);
K
Kexin Zhao 已提交
239
    AddComment(R"DOC(
D
dzhwinter 已提交
240
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
241

D
dzhwinter 已提交
242
$out = \max(x, \alpha * x)$
K
Kexin Zhao 已提交
243 244

)DOC");
245 246 247
  }
};

D
dzhwinter 已提交
248
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
249
 public:
Y
Yu Yang 已提交
250
  void Make() override {
D
dzhwinter 已提交
251 252 253
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
254
    AddComment(R"DOC(
255 256 257 258 259 260 261 262
:strong:`Softshrink Activation Operator`

..  math::
    out = \begin{cases} 
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
263 264

)DOC");
K
kexinzhao 已提交
265 266 267
  }
};

D
dzhwinter 已提交
268
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
269
 public:
Y
Yu Yang 已提交
270
  void Make() override {
D
dzhwinter 已提交
271 272 273 274
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
    AddAttr<float>("threshold", "The value of threshold for HardShrink")
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
275
    AddComment(R"DOC(
D
dzhwinter 已提交
276
HardShrink Activation Operator.
K
Kexin Zhao 已提交
277

D
dzhwinter 已提交
278 279 280 281 282 283 284
$$
out = \begin{cases} 
    x, \text{if } x > \lambda \\
    x, \text{if } x < -\lambda \\
    0,  \text{otherwise}
    \end{cases}
$$
K
Kexin Zhao 已提交
285 286

)DOC");
287 288 289
  }
};

290 291
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
292
  void Make() override {
293
    AddInput("X", "Input of BRelu operator");
F
fengjiayi 已提交
294
    AddOutput("Out", "Output of BRelu operator");
295 296 297 298
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
299
    AddComment(R"DOC(
K
kexinzhao 已提交
300
BRelu Activation Operator.
K
Kexin Zhao 已提交
301

F
fengjiayi 已提交
302
$out = \max(\min(x, t_{min}), t_{max})$
K
Kexin Zhao 已提交
303 304

)DOC");
305 306 307 308 309
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
310
  void Make() override {
311
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
312
    AddOutput("Out", "Output of SoftRelu operator");
313 314
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
315
    AddComment(R"DOC(
K
kexinzhao 已提交
316
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
317

F
fengjiayi 已提交
318
$out = \ln(1 + \exp(\max(\min(x, threshold), threshold))$
K
Kexin Zhao 已提交
319 320

)DOC");
321 322 323
  }
};

324 325
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
326
  void Make() override {
K
Kexin Zhao 已提交
327
    AddInput("X", "Input of ELU operator");
F
fengjiayi 已提交
328
    AddOutput("Out", "Output of ELU operator");
329
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
330
    AddComment(R"DOC(
K
kexinzhao 已提交
331
ELU Activation Operator.
K
Kexin Zhao 已提交
332 333 334 335

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

F
fengjiayi 已提交
336
$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$
K
Kexin Zhao 已提交
337 338

)DOC");
339 340 341
  }
};

342 343
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
344
  void Make() override {
345
    AddInput("X", "Input of Relu6 operator");
F
fengjiayi 已提交
346
    AddOutput("Out", "Output of Relu6 operator");
347 348
    AddAttr<float>("threshold", "The threshold value of Relu6")
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
349
    AddComment(R"DOC(
K
kexinzhao 已提交
350
Relu6 Activation Operator.
K
Kexin Zhao 已提交
351

F
fengjiayi 已提交
352
$out = \min(\max(0, x), 6)$
K
Kexin Zhao 已提交
353 354

)DOC");
355 356 357
  }
};

358 359
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
360
  void Make() override {
361
    AddInput("X", "Input of Pow operator");
F
fengjiayi 已提交
362
    AddOutput("Out", "Output of Pow operator");
363
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
364
    AddComment(R"DOC(
K
kexinzhao 已提交
365
Pow Activation Operator.
K
Kexin Zhao 已提交
366

F
fengjiayi 已提交
367
$out = x^{factor}$
K
Kexin Zhao 已提交
368 369

)DOC");
370 371 372 373 374
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
375
  void Make() override {
376
    AddInput("X", "Input of STanh operator");
F
fengjiayi 已提交
377
    AddOutput("Out", "Output of STanh operator");
378 379 380 381
    AddAttr<float>("scale_a", "The scale parameter of a for the input")
        .SetDefault(2.0f / 3.0f);
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
382
    AddComment(R"DOC(
K
kexinzhao 已提交
383
STanh Activation Operator.
K
Kexin Zhao 已提交
384

F
fengjiayi 已提交
385
$$out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
386 387

)DOC");
Q
qijun 已提交
388 389 390
  }
};

391 392
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
393
  void Make() override {
394
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
395
    AddOutput("Out", "Output of ThresholdedRelu operator");
396 397
    AddAttr<float>("threshold", "The threshold location of activation")
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
398
    AddComment(R"DOC(
K
kexinzhao 已提交
399
ThresholdedRelu Activation Operator.
K
Kexin Zhao 已提交
400 401

$$
F
fengjiayi 已提交
402
out = \begin{cases} 
K
Kexin Zhao 已提交
403 404 405 406 407 408
    x, \text{if } x > threshold \\
    0,  \text{otherwise}
    \end{cases}
$$

)DOC");
409 410 411
  }
};

412 413
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
414
  void Make() override {
415
    AddInput("X", "Input of HardSigmoid operator");
F
fengjiayi 已提交
416
    AddOutput("Out", "Output of HardSigmoid operator");
417 418 419 420
    AddAttr<float>("slope", "Slope for linear approximation of sigmoid")
        .SetDefault(0.2f);
    AddAttr<float>("offset", "Offset for linear approximation of sigmoid")
        .SetDefault(0.5f);
421
    AddComment(R"DOC(
K
kexinzhao 已提交
422
HardSigmoid Activation Operator.
423

K
Kexin Zhao 已提交
424 425
Segment-wise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391), 
which is much faster than sigmoid.
426

F
fengjiayi 已提交
427
$out = \max(0, \min(1, slope * x + shift))$
428 429

The slope should be positive. The offset can be either positive or negative.
K
Kexin Zhao 已提交
430
The default slope and shift are set according to the above reference.
431 432
It is recommended to use the defaults for this activation.

K
Kexin Zhao 已提交
433
)DOC");
434 435 436
  }
};

A
Abhinav Arora 已提交
437 438
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
439
  void Make() override {
A
Abhinav Arora 已提交
440
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
441
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
442 443 444 445
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
    AddComment(R"DOC(
Swish Activation Operator.

F
fengjiayi 已提交
446
$$out = \frac{x}{1 + e^{- \beta x}}$$
A
Abhinav Arora 已提交
447 448 449 450 451

)DOC");
  }
};

D
dzhwinter 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
REGISTER_ACTIVATION_OP_MAKER(Abs, AbsDoc);
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softplus, SoftplusDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

D
dzhwinter 已提交
471 472
REGISTER_ACTIVATION_OP_GRAD_MAKER(Sigmoid, sigmoid);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Relu, relu);
D
dzhwinter 已提交
473
REGISTER_ACTIVATION_OP_GRAD_MAKER(Exp, exp);
D
dzhwinter 已提交
474 475 476
REGISTER_ACTIVATION_OP_GRAD_MAKER(Tanh, tanh);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Ceil, ceil);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Floor, floor);
D
dzhwinter 已提交
477
REGISTER_ACTIVATION_OP_GRAD_MAKER(Sqrt, sqrt);
D
dzhwinter 已提交
478
REGISTER_ACTIVATION_OP_GRAD_MAKER(SoftRelu, soft_relu);
D
dzhwinter 已提交
479 480
REGISTER_ACTIVATION_OP_GRAD_MAKER(Relu6, relu6);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Reciprocal, reciprocal);
D
dzhwinter 已提交
481
REGISTER_ACTIVATION_OP_GRAD_MAKER(HardSigmoid, hard_sigmoid);
Q
qijun 已提交
482 483 484 485
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
486

D
dzhwinter 已提交
487
#define FOR_EACH_INPLACE_OP_FUNCTOR(__macro) \
D
dzhwinter 已提交
488
  __macro(Sigmoid, sigmoid);                 \
489
  __macro(Relu, relu);                       \
D
dzhwinter 已提交
490
  __macro(Exp, exp);                         \
491
  __macro(Tanh, tanh);                       \
D
dzhwinter 已提交
492 493
  __macro(Ceil, ceil);                       \
  __macro(Floor, floor);                     \
494
  __macro(Sqrt, sqrt);                       \
D
dzhwinter 已提交
495 496 497 498
  __macro(SoftRelu, soft_relu);              \
  __macro(Relu6, relu6);                     \
  __macro(Reciprocal, reciprocal);           \
  __macro(HardSigmoid, hard_sigmoid);
D
dzhwinter 已提交
499 500

#define FOR_EACH_OP_FUNCTOR(__macro) \
D
dzhwinter 已提交
501 502
  __macro(LogSigmoid, logsigmoid);   \
  __macro(SoftShrink, softshrink);   \
503
  __macro(Abs, abs);                 \
D
dzhwinter 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
  __macro(Cos, cos);                 \
  __macro(Sin, sin);                 \
  __macro(Round, round);             \
  __macro(Log, log);                 \
  __macro(Square, square);           \
  __macro(BRelu, brelu);             \
  __macro(Pow, pow);                 \
  __macro(STanh, stanh);             \
  __macro(Softplus, softplus);       \
  __macro(Softsign, softsign);       \
  __macro(LeakyRelu, leaky_relu);    \
  __macro(TanhShrink, tanh_shrink);  \
  __macro(ELU, elu);                 \
  __macro(HardShrink, hard_shrink);  \
  __macro(Swish, swish);             \
  __macro(ThresholdedRelu, thresholded_relu);

#define REGISTER_INPLACE_ACTIVATION_OP(OP_NAME, KERNEL_TYPE)        \
  REGISTER_OPERATOR(KERNEL_TYPE, ::paddle::operators::ActivationOp, \
                    ::paddle::operators::OP_NAME##OpMaker,          \
                    ::paddle::operators::OP_NAME##GradMaker);       \
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ::paddle::operators::ActivationOpGrad)

D
dzhwinter 已提交
527 528 529 530 531
#define REGISTER_ACTIVATION_OP(OP_NAME, KERNEL_TYPE)                    \
  REGISTER_OPERATOR(KERNEL_TYPE, ::paddle::operators::ActivationOp,     \
                    ::paddle::operators::OP_NAME##OpMaker,              \
                    ::paddle::framework::DefaultGradOpDescMaker<true>); \
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ::paddle::operators::ActivationOpGrad)
A
Abhinav Arora 已提交
532

Q
QI JUN 已提交
533 534 535 536 537 538 539 540 541 542 543
#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor)   \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
544
                                ops::grad_functor<double>>);
545

D
dzhwinter 已提交
546
FOR_EACH_OP_FUNCTOR(REGISTER_ACTIVATION_OP);
D
dzhwinter 已提交
547
FOR_EACH_INPLACE_OP_FUNCTOR(REGISTER_INPLACE_ACTIVATION_OP);
548
FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL);