Fork自 PaddlePaddle / Paddle
import unittest import numpy as np from paddle.v2.framework.op import Operator from gradient_checker import GradientChecker from op_test_util import OpTestMeta class TestClipOp(unittest.TestCase): __metaclass__ = OpTestMeta def setUp(self): input = np.random.random((16, 16)).astype("float32") print "input: %s" % input self.type = "clip" self.inputs = {'X': input, } self.attrs = {} self.attrs['min'] = 0.1 self.attrs['max'] = 0.9 self.outputs = { 'Out': np.clip(self.inputs['X'], self.attrs['min'], self.attrs['max']) } class TestClipGradOp(GradientChecker): def setUp(self): self.op = Operator(type="clip", X="X", Out="Out", min=0.1, max=0.9) self.inputs = {'X': np.random.random((16, 16)).astype("float32"), } def test_normal(self): self.check_grad( self.op, self.inputs, set(["X"]), "Out", max_relative_error=0.5) def test_cpu_gpu_compare(self): self.compare_grad(self.op, self.inputs) if __name__ == '__main__': unittest.main()