test_strided_slice_op.py 29.2 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from op_test import OpTest
import numpy as np
import unittest
18
import paddle.fluid as fluid
19 20 21
import paddle

paddle.enable_static()
W
wangchaochaohu 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


def strided_slice_native_forward(input, axes, starts, ends, strides):
    dim = input.ndim
    start = []
    end = []
    stride = []
    for i in range(dim):
        start.append(0)
        end.append(input.shape[i])
        stride.append(1)

    for i in range(len(axes)):
        start[axes[i]] = starts[i]
        end[axes[i]] = ends[i]
        stride[axes[i]] = strides[i]

    result = {
        1: lambda input, start, end, stride: input[start[0]:end[0]:stride[0]],
        2: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1]],
        3: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1], start[2]:end[2]:stride[2]],
        4: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1], start[2]:end[2]:stride[2], start[3]:end[3]:stride[3]],
        5: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1], start[2]:end[2]:stride[2], start[3]:end[3]:stride[3], start[4]:end[4]:stride[4]],
        6: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
                start[1]:end[1]:stride[1], start[2]:end[2]:stride[2], start[3]:end[3]:stride[3], \
                start[4]:end[4]:stride[4], start[5]:end[5]:stride[5]]
    }[dim](input, start, end, stride)

    return result


class TestStrideSliceOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'strided_slice'
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
70 71
            'strides': self.strides,
            'infer_flags': self.infer_flags
W
wangchaochaohu 已提交
72 73 74 75 76 77 78 79 80
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(set(['Input']), 'Out')

    def initTestCase(self):
81
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
82 83 84 85
        self.axes = [0]
        self.starts = [-4]
        self.ends = [-3]
        self.strides = [1]
86
        self.infer_flags = [1]
W
wangchaochaohu 已提交
87 88 89 90


class TestStrideSliceOp1(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
91
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
92 93 94 95
        self.axes = [0]
        self.starts = [3]
        self.ends = [8]
        self.strides = [1]
96
        self.infer_flags = [1]
W
wangchaochaohu 已提交
97 98 99 100


class TestStrideSliceOp2(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
101
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
102 103 104 105
        self.axes = [0]
        self.starts = [5]
        self.ends = [0]
        self.strides = [-1]
106
        self.infer_flags = [1]
W
wangchaochaohu 已提交
107 108 109 110


class TestStrideSliceOp3(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
111
        self.input = np.random.rand(100)
W
wangchaochaohu 已提交
112 113 114 115
        self.axes = [0]
        self.starts = [-1]
        self.ends = [-3]
        self.strides = [-1]
116
        self.infer_flags = [1]
W
wangchaochaohu 已提交
117 118 119 120


class TestStrideSliceOp4(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
121
        self.input = np.random.rand(3, 4, 10)
W
wangchaochaohu 已提交
122 123 124 125
        self.axes = [0, 1, 2]
        self.starts = [0, -1, 0]
        self.ends = [2, -3, 5]
        self.strides = [1, -1, 1]
126
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
127 128 129 130


class TestStrideSliceOp5(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
131
        self.input = np.random.rand(5, 5, 5)
W
wangchaochaohu 已提交
132 133 134 135
        self.axes = [0, 1, 2]
        self.starts = [1, 0, 0]
        self.ends = [2, 1, 3]
        self.strides = [1, 1, 1]
136
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
137 138 139 140


class TestStrideSliceOp6(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
141
        self.input = np.random.rand(5, 5, 5)
W
wangchaochaohu 已提交
142 143 144 145
        self.axes = [0, 1, 2]
        self.starts = [1, -1, 0]
        self.ends = [2, -3, 3]
        self.strides = [1, -1, 1]
146
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
147 148 149 150


class TestStrideSliceOp7(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
151
        self.input = np.random.rand(5, 5, 5)
W
wangchaochaohu 已提交
152 153 154 155
        self.axes = [0, 1, 2]
        self.starts = [1, 0, 0]
        self.ends = [2, 2, 3]
        self.strides = [1, 1, 1]
156
        self.infer_flags = [1, 1, 1]
W
wangchaochaohu 已提交
157 158 159 160


class TestStrideSliceOp8(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
161
        self.input = np.random.rand(1, 100, 1)
W
wangchaochaohu 已提交
162 163 164 165
        self.axes = [1]
        self.starts = [1]
        self.ends = [2]
        self.strides = [1]
166
        self.infer_flags = [1]
W
wangchaochaohu 已提交
167 168 169 170


class TestStrideSliceOp9(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
171
        self.input = np.random.rand(1, 100, 1)
W
wangchaochaohu 已提交
172 173 174 175
        self.axes = [1]
        self.starts = [-1]
        self.ends = [-2]
        self.strides = [-1]
176
        self.infer_flags = [1]
W
wangchaochaohu 已提交
177 178 179 180


class TestStrideSliceOp10(TestStrideSliceOp):
    def initTestCase(self):
Z
zhupengyang 已提交
181
        self.input = np.random.rand(10, 10)
W
wangchaochaohu 已提交
182 183 184 185
        self.axes = [0, 1]
        self.starts = [1, 0]
        self.ends = [2, 2]
        self.strides = [1, 1]
186
        self.infer_flags = [1, 1]
W
wangchaochaohu 已提交
187 188 189 190 191 192 193 194 195


class TestStrideSliceOp11(TestStrideSliceOp):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4)
        self.axes = [0, 1, 2, 3]
        self.starts = [1, 0, 0, 0]
        self.ends = [2, 2, 3, 4]
        self.strides = [1, 1, 1, 2]
196
        self.infer_flags = [1, 1, 1, 1]
W
wangchaochaohu 已提交
197 198 199 200 201 202 203 204 205


class TestStrideSliceOp12(TestStrideSliceOp):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4, 5)
        self.axes = [0, 1, 2, 3, 4]
        self.starts = [1, 0, 0, 0, 0]
        self.ends = [2, 2, 3, 4, 4]
        self.strides = [1, 1, 1, 1, 1]
206
        self.infer_flags = [1, 1, 1, 1]
W
wangchaochaohu 已提交
207 208 209 210 211 212 213 214 215


class TestStrideSliceOp13(TestStrideSliceOp):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 6, 7, 8)
        self.axes = [0, 1, 2, 3, 4, 5]
        self.starts = [1, 0, 0, 0, 1, 2]
        self.ends = [2, 2, 3, 1, 2, 8]
        self.strides = [1, 1, 1, 1, 1, 2]
216 217 218
        self.infer_flags = [1, 1, 1, 1, 1]


219 220 221 222 223 224 225 226 227 228
class TestStrideSliceOp14(TestStrideSliceOp):
    def initTestCase(self):
        self.input = np.random.rand(4, 4, 4, 4)
        self.axes = [1, 2, 3]
        self.starts = [-5, 0, -7]
        self.ends = [-1, 2, 4]
        self.strides = [1, 1, 1]
        self.infer_flags = [1, 1, 1]


229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
class TestStrideSliceOpBool(TestStrideSliceOp):
    def test_check_grad(self):
        pass


class TestStrideSliceOpBool1D(TestStrideSliceOpBool):
    def initTestCase(self):
        self.input = np.random.rand(100).astype("bool")
        self.axes = [0]
        self.starts = [3]
        self.ends = [8]
        self.strides = [1]
        self.infer_flags = [1]


class TestStrideSliceOpBool2D(TestStrideSliceOpBool):
    def initTestCase(self):
        self.input = np.random.rand(10, 10).astype("bool")
        self.axes = [0, 1]
        self.starts = [1, 0]
        self.ends = [2, 2]
        self.strides = [1, 1]
        self.infer_flags = [1, 1]


class TestStrideSliceOpBool3D(TestStrideSliceOpBool):
    def initTestCase(self):
        self.input = np.random.rand(3, 4, 10).astype("bool")
        self.axes = [0, 1, 2]
        self.starts = [0, -1, 0]
        self.ends = [2, -3, 5]
        self.strides = [1, -1, 1]
        self.infer_flags = [1, 1, 1]


class TestStrideSliceOpBool4D(TestStrideSliceOpBool):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4).astype("bool")
        self.axes = [0, 1, 2, 3]
        self.starts = [1, 0, 0, 0]
        self.ends = [2, 2, 3, 4]
        self.strides = [1, 1, 1, 2]
        self.infer_flags = [1, 1, 1, 1]


class TestStrideSliceOpBool5D(TestStrideSliceOpBool):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 4, 5).astype("bool")
        self.axes = [0, 1, 2, 3, 4]
        self.starts = [1, 0, 0, 0, 0]
        self.ends = [2, 2, 3, 4, 4]
        self.strides = [1, 1, 1, 1, 1]
        self.infer_flags = [1, 1, 1, 1]


class TestStrideSliceOpBool6D(TestStrideSliceOpBool):
    def initTestCase(self):
        self.input = np.random.rand(3, 3, 3, 6, 7, 8).astype("bool")
        self.axes = [0, 1, 2, 3, 4, 5]
        self.starts = [1, 0, 0, 0, 1, 2]
        self.ends = [2, 2, 3, 1, 2, 8]
        self.strides = [1, 1, 1, 1, 1, 2]
        self.infer_flags = [1, 1, 1, 1, 1]


294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
class TestStridedSliceOp_starts_ListTensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()

        starts_tensor = []
        for index, ele in enumerate(self.starts):
            starts_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts_infer,
            'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags
        }

    def config(self):
315
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [1, -1, 1]
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

        self.starts_infer = [1, 10, 2]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_ends_ListTensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()

        ends_tensor = []
        for index, ele in enumerate(self.ends):
            ends_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {'Input': self.input, 'EndsTensorList': ends_tensor}
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends_infer,
            'strides': self.strides,
            'infer_flags': self.infer_flags
        }

    def config(self):
354
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
        self.starts = [1, 0, 0]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 2]
        self.infer_flags = [1, -1, 1]
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

        self.ends_infer = [3, 1, 4]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_starts_Tensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()
        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
                self.starts, dtype="int32")
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
391
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [-1, -1, -1]
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_ends_Tensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()
        self.inputs = {
            'Input': self.input,
            "EndsTensor": np.array(
                self.ends, dtype="int32")
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            #'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
426
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [-1, -1, -1]
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_listTensor_Tensor(OpTest):
    def setUp(self):
        self.config()
        ends_tensor = []
        for index, ele in enumerate(self.ends):
            ends_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))
        self.op_type = "strided_slice"

        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
                self.starts, dtype="int32"),
            "EndsTensorList": ends_tensor
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            #'ends': self.ends,
            'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
467
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, 1, 1]
        self.infer_flags = [-1, -1, -1]
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


class TestStridedSliceOp_strides_Tensor(OpTest):
    def setUp(self):
        self.op_type = "strided_slice"
        self.config()
        self.inputs = {
            'Input': self.input,
            "StridesTensor": np.array(
                self.strides, dtype="int32")
        }
        self.outputs = {'Out': self.output}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            #'strides': self.strides,
            'infer_flags': self.infer_flags,
        }

    def config(self):
502
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        self.starts = [1, -1, 2]
        self.ends = [2, 0, 4]
        self.axes = [0, 1, 2]
        self.strides = [1, -1, 1]
        self.infer_flags = [-1, -1, -1]
        self.output = strided_slice_native_forward(
            self.input, self.axes, self.starts, self.ends, self.strides)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


# Test python API
519
class TestStridedSliceAPI(unittest.TestCase):
520
    def test_1(self):
521
        input = np.random.random([3, 4, 5, 6]).astype("float64")
522 523 524
        minus_1 = fluid.layers.fill_constant([1], "int32", -1)
        minus_3 = fluid.layers.fill_constant([1], "int32", -3)
        starts = fluid.layers.data(
525
            name='starts', shape=[3], dtype='int32', append_batch_size=False)
526
        ends = fluid.layers.data(
527
            name='ends', shape=[3], dtype='int32', append_batch_size=False)
528
        strides = fluid.layers.data(
529
            name='strides', shape=[3], dtype='int32', append_batch_size=False)
530 531 532 533 534

        x = fluid.layers.data(
            name="x",
            shape=[3, 4, 5, 6],
            append_batch_size=False,
535
            dtype="float64")
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
        out_1 = fluid.layers.strided_slice(
            x,
            axes=[0, 1, 2],
            starts=[-3, 0, 2],
            ends=[3, 100, -1],
            strides=[1, 1, 1])
        out_2 = fluid.layers.strided_slice(
            x,
            axes=[0, 1, 3],
            starts=[minus_3, 0, 2],
            ends=[3, 100, -1],
            strides=[1, 1, 1])
        out_3 = fluid.layers.strided_slice(
            x,
            axes=[0, 1, 3],
            starts=[minus_3, 0, 2],
            ends=[3, 100, minus_1],
            strides=[1, 1, 1])
        out_4 = fluid.layers.strided_slice(
            x, axes=[0, 1, 2], starts=starts, ends=ends, strides=strides)

557 558 559
        out_5 = x[-3:3, 0:100:2, -1:2:-1]
        out_6 = x[minus_3:3:1, 0:100:2, :, minus_1:2:minus_1]
        out_7 = x[minus_1, 0:100:2, :, -1:2:-1]
560 561 562 563 564 565 566

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                'starts': np.array([-3, 0, 2]).astype("int32"),
567
                'ends': np.array([3, 2147483648, -1]).astype("int64"),
568 569 570 571 572 573 574
                'strides': np.array([1, 1, 1]).astype("int32")
            },
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])
        assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
575 576 577
        assert np.array_equal(res_5, input[-3:3, 0:100:2, -1:2:-1, :])
        assert np.array_equal(res_6, input[-3:3, 0:100:2, :, -1:2:-1])
        assert np.array_equal(res_7, input[-1, 0:100:2, :, -1:2:-1])
W
wangchaochaohu 已提交
578

579 580 581 582 583 584 585 586 587 588
    def test_dygraph_op(self):
        x = paddle.zeros(shape=[3, 4, 5, 6], dtype="float32")
        axes = [1, 2, 3]
        starts = [-3, 0, 2]
        ends = [3, 2, 4]
        strides_1 = [1, 1, 1]
        sliced_1 = paddle.strided_slice(
            x, axes=axes, starts=starts, ends=ends, strides=strides_1)
        assert sliced_1.shape == (3, 2, 2, 2)

589 590 591 592 593 594 595 596
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "Cannot use CUDAPinnedPlace in CPU only version")
    def test_cuda_pinned_place(self):
        with paddle.fluid.dygraph.guard():
            x = paddle.to_tensor(
                np.random.randn(2, 10), place=paddle.CUDAPinnedPlace())
            self.assertTrue(x.place.is_cuda_pinned_place())
            y = x[:, ::2]
597
            self.assertFalse(x.place.is_cuda_pinned_place())
598 599
            self.assertFalse(y.place.is_cuda_pinned_place())

W
wangchaochaohu 已提交
600

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
class ArrayLayer(paddle.nn.Layer):
    def __init__(self, input_size=224, output_size=10, array_size=1):
        super(ArrayLayer, self).__init__()
        self.input_size = input_size
        self.output_size = output_size
        self.array_size = array_size
        for i in range(self.array_size):
            setattr(self,
                    self.create_name(i),
                    paddle.nn.Linear(input_size, output_size))

    def create_name(self, index):
        return 'linear_' + str(index)

    def forward(self, inps):
        array = []
        for i in range(self.array_size):
            linear = getattr(self, self.create_name(i))
            array.append(linear(inps))

        tensor_array = self.create_tensor_array(array)

        tensor_array = self.array_slice(tensor_array)

        array1 = paddle.concat(tensor_array)
        array2 = paddle.concat(tensor_array[::-1])
        return array1 + array2 * array2

    def get_all_grads(self, param_name='weight'):
        grads = []
        for i in range(self.array_size):
            linear = getattr(self, self.create_name(i))
            param = getattr(linear, param_name)

            g = param.grad
            if g is not None:
                g = g.numpy()

            grads.append(g)

        return grads

    def clear_all_grad(self):
        param_names = ['weight', 'bias']
        for i in range(self.array_size):
            linear = getattr(self, self.create_name(i))
            for p in param_names:
                param = getattr(linear, p)
                param.clear_gradient()

    def array_slice(self, array):
        return array

    def create_tensor_array(self, tensors):
        tensor_array = None
        for i, tensor in enumerate(tensors):
            index = paddle.full(shape=[1], dtype='int64', fill_value=i)
            if tensor_array is None:
                tensor_array = paddle.tensor.array_write(tensor, i=index)
            else:
                paddle.tensor.array_write(tensor, i=index, array=tensor_array)
        return tensor_array


class TestStridedSliceTensorArray(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

    def grad_equal(self, g1, g2):
        if g1 is None:
            g1 = np.zeros_like(g2)
        if g2 is None:
            g2 = np.zeros_like(g1)
        return np.array_equal(g1, g2)

    def is_grads_equal(self, g1, g2):
        for i, g in enumerate(g1):

            self.assertTrue(
                self.grad_equal(g, g2[i]),
                msg="gradient_1:\n{} \ngradient_2:\n{}".format(g, g2))

    def is_grads_equal_zeros(self, grads):
        for g in grads:
            self.assertTrue(
                self.grad_equal(np.zeros_like(g), g),
                msg="The gradient should be zeros, but received \n{}".format(g))

    def create_case(self, net):
        inps1 = paddle.randn([1, net.input_size], dtype='float32')
        inps2 = inps1.detach().clone()
        l1 = net(inps1)
        s1 = l1.numpy()
        l1.sum().backward()
        grads_dy = net.get_all_grads()
        net.clear_all_grad()
        grads_zeros = net.get_all_grads()

        self.is_grads_equal_zeros(grads_zeros)

        func = paddle.jit.to_static(net.forward)
        l2 = func(inps2)
        s2 = l2.numpy()
        l2.sum().backward()
        grads_static = net.get_all_grads()
        net.clear_all_grad()
        # compare result of dygraph and static 
        self.is_grads_equal(grads_static, grads_dy)
        self.assertTrue(
            np.array_equal(s1, s2),
            msg="dygraph graph result:\n{} \nstatic dygraph result:\n{}".format(
                l1.numpy(), l2.numpy()))

    def test_strided_slice_tensor_array_cuda_pinned_place(self):
        if paddle.device.is_compiled_with_cuda():
            with paddle.fluid.dygraph.guard():

                class Simple(paddle.nn.Layer):
                    def __init__(self):
                        super(Simple, self).__init__()

                    def forward(self, inps):
                        tensor_array = None
                        for i, tensor in enumerate(inps):
                            index = paddle.full(
                                shape=[1], dtype='int64', fill_value=i)
                            if tensor_array is None:
                                tensor_array = paddle.tensor.array_write(
                                    tensor, i=index)
                            else:
                                paddle.tensor.array_write(
                                    tensor, i=index, array=tensor_array)

                        array1 = paddle.concat(tensor_array)
                        array2 = paddle.concat(tensor_array[::-1])
                        return array1 + array2 * array2

                net = Simple()
                func = paddle.jit.to_static(net.forward)

                inps1 = paddle.to_tensor(
                    np.random.randn(2, 10),
                    place=paddle.CUDAPinnedPlace(),
                    stop_gradient=False)
                inps2 = paddle.to_tensor(
                    np.random.randn(2, 10),
                    place=paddle.CUDAPinnedPlace(),
                    stop_gradient=False)

                self.assertTrue(inps1.place.is_cuda_pinned_place())
                self.assertTrue(inps2.place.is_cuda_pinned_place())

                result = func([inps1, inps2])

                self.assertFalse(result.place.is_cuda_pinned_place())

    def test_strided_slice_tensor_array(self):
758
        class Net01(ArrayLayer):
759 760 761
            def array_slice(self, tensors):
                return tensors[::-1]

762
        self.create_case(Net01(array_size=10))
763

764
        class Net02(ArrayLayer):
765 766 767
            def array_slice(self, tensors):
                return tensors[::-2]

768
        self.create_case(Net02(input_size=112, array_size=11))
769

770
        class Net03(ArrayLayer):
771 772 773
            def array_slice(self, tensors):
                return tensors[::-3]

774
        self.create_case(Net03(input_size=112, array_size=9))
775

776
        class Net04(ArrayLayer):
777 778 779
            def array_slice(self, tensors):
                return tensors[1::-4]

780
        self.create_case(Net04(input_size=112, array_size=9))
781

782
        class Net05(ArrayLayer):
783 784 785
            def array_slice(self, tensors):
                return tensors[:7:-4]

786
        self.create_case(Net05(input_size=112, array_size=9))
787

788
        class Net06(ArrayLayer):
789 790 791
            def array_slice(self, tensors):
                return tensors[8:0:-4]

792
        self.create_case(Net06(input_size=112, array_size=9))
793

794
        class Net07(ArrayLayer):
795 796 797
            def array_slice(self, tensors):
                return tensors[8:1:-4]

798
        self.create_case(Net07(input_size=112, array_size=9))
799

800
        class Net08(ArrayLayer):
801 802 803
            def array_slice(self, tensors):
                return tensors[::2]

804
        self.create_case(Net08(input_size=112, array_size=11))
805

806
        class Net09(ArrayLayer):
807 808 809
            def array_slice(self, tensors):
                return tensors[::3]

810
        self.create_case(Net09(input_size=112, array_size=9))
811

812
        class Net10(ArrayLayer):
813 814 815
            def array_slice(self, tensors):
                return tensors[1::4]

816
        self.create_case(Net10(input_size=112, array_size=9))
817

818
        class Net11(ArrayLayer):
819 820 821
            def array_slice(self, tensors):
                return tensors[:8:4]

822
        self.create_case(Net11(input_size=112, array_size=9))
823

824
        class Net12(ArrayLayer):
825 826 827
            def array_slice(self, tensors):
                return tensors[1:8:4]

828
        self.create_case(Net12(input_size=112, array_size=9))
829

830
        class Net13(ArrayLayer):
831 832 833
            def array_slice(self, tensors):
                return tensors[8:10:4]

834
        self.create_case(Net13(input_size=112, array_size=13))
835

836
        class Net14(ArrayLayer):
837 838 839
            def array_slice(self, tensors):
                return tensors[3:10:4]

840
        self.create_case(Net14(input_size=112, array_size=13))
841

842
        class Net15(ArrayLayer):
843 844 845
            def array_slice(self, tensors):
                return tensors[2:10:4]

846
        self.create_case(Net15(input_size=112, array_size=13))
847

848
        class Net16(ArrayLayer):
849 850 851
            def array_slice(self, tensors):
                return tensors[3:10:3]

852
        self.create_case(Net16(input_size=112, array_size=13))
853

854
        class Net17(ArrayLayer):
855 856 857
            def array_slice(self, tensors):
                return tensors[3:15:3]

858
        self.create_case(Net17(input_size=112, array_size=13))
859

860
        class Net18(ArrayLayer):
861 862 863
            def array_slice(self, tensors):
                return tensors[0:15:3]

864
        self.create_case(Net18(input_size=112, array_size=13))
865

866
        class Net19(ArrayLayer):
867 868 869
            def array_slice(self, tensors):
                return tensors[-1:-5:-3]

870
        self.create_case(Net19(input_size=112, array_size=13))
871

872
        class Net20(ArrayLayer):
873 874 875
            def array_slice(self, tensors):
                return tensors[-1:-6:-3]

876
        self.create_case(Net20(input_size=112, array_size=13))
877

878
        class Net21(ArrayLayer):
879 880 881
            def array_slice(self, tensors):
                return tensors[-3:-6:-3]

882
        self.create_case(Net21(input_size=112, array_size=13))
883

884
        class Net22(ArrayLayer):
885 886 887
            def array_slice(self, tensors):
                return tensors[-5:-1:3]

888
        self.create_case(Net22(input_size=112, array_size=13))
889

890
        class Net23(ArrayLayer):
891 892 893
            def array_slice(self, tensors):
                return tensors[-6:-1:3]

894
        self.create_case(Net23(input_size=112, array_size=13))
895

896
        class Net24(ArrayLayer):
897 898 899
            def array_slice(self, tensors):
                return tensors[-6:-3:3]

900
        self.create_case(Net24(input_size=112, array_size=13))
901

902
        class Net25(ArrayLayer):
903 904 905
            def array_slice(self, tensors):
                return tensors[0::3]

906
        self.create_case(Net25(input_size=112, array_size=13))
907

908
        class Net26(ArrayLayer):
909 910 911
            def array_slice(self, tensors):
                return tensors[-60:20:3]

912
        self.create_case(Net26(input_size=112, array_size=13))
913

914
        class Net27(ArrayLayer):
915 916 917
            def array_slice(self, tensors):
                return tensors[-3:-60:-3]

918
        self.create_case(Net27(input_size=112, array_size=13))
919 920


W
wangchaochaohu 已提交
921 922
if __name__ == "__main__":
    unittest.main()