mkldnn_quantizer.cc 23.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#include <algorithm>
17
#include <limits>
18 19 20 21 22 23 24 25 26 27 28 29
#include <map>
#include <numeric>
#include <unordered_map>
#include <utility>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/type_defs.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
30
#include "paddle/fluid/platform/mkldnn_helper.h"
31 32 33 34 35 36 37
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {

using platform::CPUPlace;
using framework::LoDTensor;
38
using framework::Variable;
39 40 41
using framework::ir::Graph;
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<float, Eigen::Dynamic, 1>>;
M
Michał Gallus 已提交
42 43 44 45 46
using EigenMatrixDoubleArray =
    Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
using EigenMatrixArray =
    Eigen::Array<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
using ConstEigenMatrixArrayMap = Eigen::Map<const EigenMatrixArray>;
47
using string::PrettyLogH1;
48
using VariableNameMap = std::map<std::string, std::vector<std::string>>;
49
static LoDTensor CreateScaleTensor(int64_t channels_num = 1);
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
static void check_var(const Variable* var, const std::string& var_name) {
  PADDLE_ENFORCE_NOT_NULL(var, platform::errors::PreconditionNotMet(
                                   "%s is not in the scope", var_name));
  PADDLE_ENFORCE_EQ(
      var->IsType<LoDTensor>(), true,
      platform::errors::PreconditionNotMet("Only support lod tensor now."));
}

static void check_tensor(const LoDTensor& tensor) {
  PADDLE_ENFORCE_GT(tensor.dims().size(), 0, platform::errors::InvalidArgument(
                                                 "Tensor dimension is empty."));
}

void AnalysisPredictor::MkldnnQuantizer::CalculateScalesForGRUWeights(
    const paddle::framework::OpDesc* op) {
  const auto& wx_names = op->Input("WeightX");
  const auto& wh_names = op->Input("WeightH");
  for (size_t i = 0; i < wx_names.size(); ++i) {
    const auto& wx_name = wx_names[i];
    const auto& wh_name = wh_names[i];
    auto* wx_var = predictor_.sub_scope_->FindVar(wx_name);
    auto* wh_var = predictor_.sub_scope_->FindVar(wh_name);
    check_var(wx_var, wx_name);
    check_var(wh_var, wh_name);
    LoDTensor* wx_tensor = wx_var->GetMutable<LoDTensor>();
    LoDTensor* wh_tensor = wh_var->GetMutable<LoDTensor>();
    scales_[wx_name] = GetMaxChGRUScalingFactor(*wx_tensor, *wh_tensor);
  }
}

void AnalysisPredictor::MkldnnQuantizer::CalculateScalesForOpInputs(
    const paddle::framework::OpDesc* op) {
  if (op->Type() == "fusion_gru" || op->Type() == "multi_gru") {
    CalculateScalesForGRUWeights(op);
  }
  for (auto const& input : op->Inputs()) {
    for (const auto& var_name : input.second) {
      // skip if scale already computed
      if (scales_.find(var_name) != scales_.end()) continue;
      auto* var = predictor_.sub_scope_->FindVar(var_name);
      check_var(var, var_name);
      LoDTensor* var_tensor = var->GetMutable<LoDTensor>();
      // force unsigned type if already know it
      bool is_unsigned = false;
      CalculateSingleScale(op->Type(), input.first, var_name, *var_tensor,
                           is_unsigned);
    }
  }
}

void AnalysisPredictor::MkldnnQuantizer::CalculateScalesForOpOutputs(
    const paddle::framework::OpDesc* op) {
  for (auto const& output : op->Outputs()) {
    for (const auto& var_name : output.second) {
      // skip if scale already computed
      if (scales_.find(var_name) != scales_.end()) continue;
      auto* var = predictor_.sub_scope_->FindVar(var_name);
      check_var(var, var_name);
      LoDTensor* var_tensor = var->GetMutable<LoDTensor>();
      // force unsigned type if already know it
      bool is_unsigned = false;
      bool compute_scale = true;
      if (op->Type() == "conv2d" || op->Type() == "fc") {
        // output of conv2d with relu must be unsigned
        std::string fuse_activation =
            op->GetAttrIfExists<std::string>("fuse_activation");
        is_unsigned = (fuse_activation == "relu" || fuse_activation == "relu6");
      } else if (op->Type() == "relu") {
        is_unsigned = true;
      } else if (op->Type() == "transpose2" || op->Type() == "reshape2" ||
                 op->Type() == "pool2d") {
        auto input_var_name = op->Input("X")[0];
        PADDLE_ENFORCE_NE(scales_.find(input_var_name), scales_.end(),
                          platform::errors::PreconditionNotMet(
                              "Input scales must be calculated before the "
                              "output scales to infer if output is unsigned."));
        if (scales_.find(input_var_name) != scales_.end()) {
          scales_[var_name] = scales_[input_var_name];
        }
        compute_scale = false;
      } else if (op->Type() == "concat") {
        // output of ops with unsigned input must be unsigned
        is_unsigned = true;
        double min_scale = std::numeric_limits<double>::max();
        for (auto input_var_name : op->Input("X")) {
          PADDLE_ENFORCE_NE(
              scales_.find(input_var_name), scales_.end(),
              platform::errors::PreconditionNotMet(
                  "Input scales must be calculated before the "
                  "output scales to infer if output is unsigned."));
          is_unsigned = is_unsigned && scales_[input_var_name].first;
          min_scale = std::min(
              min_scale, scales_[input_var_name].second.data<double>()[0]);
        }
        auto scale_tensor = CreateScaleTensor();
        scale_tensor.data<double>()[0] = min_scale;
        scales_[var_name] = {is_unsigned, scale_tensor};
        compute_scale = false;
      }
      if (compute_scale) {
        CalculateSingleScale(op->Type(), output.first, var_name, *var_tensor,
                             is_unsigned);
      }
    }
  }
}

158 159 160 161
bool AnalysisPredictor::MkldnnQuantizer::CalculateScales() {
  PrettyLogH1("--- Calculating scales for quantization");
  std::map<std::string, std::map<std::string, LoDTensor>> gathered_data;
  for (const auto* op : predictor_.inference_program_->Block(0).AllOps()) {
162
    if (platform::HasOpINT8DataType(op)) {
163
      // handle inputs first to let is_unsigned be inferred for the outputs
164 165
      CalculateScalesForOpInputs(op);
      CalculateScalesForOpOutputs(op);
166 167 168 169 170 171 172 173 174 175 176 177
    }
  }
  return true;
}

void AnalysisPredictor::MkldnnQuantizer::CalculateSingleScale(
    const std::string& op_type_name, const std::string& conn_name,
    const std::string& var_name, const LoDTensor& var_tensor,
    bool is_unsigned) {
  auto rule = qconfig_->scale_algo(op_type_name, conn_name);
  if (rule == ScaleAlgo::NONE) return;

178 179 180 181 182 183
  PADDLE_ENFORCE_GT(
      var_tensor.numel(), 0,
      platform::errors::InvalidArgument(
          "MkldnnQuantizer: LoDTensor of variable %s for quantization of op "
          "%s of connection %s should not be empty.",
          var_name, op_type_name, conn_name));
184 185 186 187 188 189

  switch (rule) {
    case ScaleAlgo::MAX:
      scales_[var_name] = GetMaxScalingFactor(var_tensor, is_unsigned);
      break;
    case ScaleAlgo::MAX_CH:
M
Michał Gallus 已提交
190 191 192 193 194 195
      scales_[var_name] = GetMaxChScalingFactor(var_tensor, is_unsigned,
                                                /*is_transposed*/ false);
      break;
    case ScaleAlgo::MAX_CH_T:
      scales_[var_name] = GetMaxChScalingFactor(var_tensor, is_unsigned,
                                                /*is_transposed*/ true);
196 197 198 199 200 201 202 203 204 205
      break;
    case ScaleAlgo::KL:
      scales_[var_name] = GetKLScalingFactor(var_tensor, is_unsigned);
      break;
    default:
      throw std::runtime_error(
          "MkldnnQuantizer: Unexpected ScaleAlgo specified.");
  }
}

206 207 208 209 210 211 212
static LoDTensor CreateScaleTensor(int64_t channels_num) {
  LoDTensor scale_tensor;
  scale_tensor.Resize({channels_num});
  scale_tensor.mutable_data<double>(CPUPlace());
  return scale_tensor;
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
std::vector<int> AnalysisPredictor::MkldnnQuantizer::ExpandQuantizedBins(
    std::vector<int> quantized_bins, std::vector<int> reference_bins) const {
  std::vector<int> expanded_quantized_bins(reference_bins.size(), 0);
  int num_merged_bins = reference_bins.size() / quantized_bins.size();
  int j_start = 0;
  int j_end = num_merged_bins;
  for (size_t idx = 0; idx < quantized_bins.size(); idx++) {
    int zero_count =
        std::count(&reference_bins[j_start], &reference_bins[j_end], 0);
    num_merged_bins = j_end - j_start;
    int avg_bin_ele;
    if (zero_count == num_merged_bins) {
      avg_bin_ele = 0;
    } else {
      avg_bin_ele = quantized_bins[idx] / (num_merged_bins - zero_count + 0.0);
    }
    for (int idx1 = j_start; idx1 < j_end; idx1++) {
      expanded_quantized_bins[idx1] =
          (reference_bins[idx1] == 0) ? 0 : avg_bin_ele;
    }
    j_start += num_merged_bins;
    j_end += num_merged_bins;
    if ((idx + 1) == quantized_bins.size() - 1) {
      j_end = reference_bins.size();
    }
  }
  return expanded_quantized_bins;
}

std::pair<bool, LoDTensor>
AnalysisPredictor::MkldnnQuantizer::GetKLScalingFactor(
    const LoDTensor& var_tensor, bool is_unsigned) const {
  ConstEigenVectorArrayMap eigen_tensor{var_tensor.data<float>(),
                                        var_tensor.numel(), 1};
  int precision_hist_num_bins = 2048;
  float max_val = eigen_tensor.maxCoeff();
  float min_val = eigen_tensor.minCoeff();
  bool is_positive = min_val >= 0.0f;
  if (is_unsigned)
252 253 254 255 256
    PADDLE_ENFORCE_EQ(
        is_positive, true,
        platform::errors::InvalidArgument(
            "Tensor is claimed to be unsigned, but its min value (%f) is < 0.0",
            min_val));
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

  int num_quantized_bins = 255;

  std::vector<int> hist;
  float bin_width;
  int starting_iter;
  int ending_iter = precision_hist_num_bins - 1;
  if (is_positive) {
    std::tie(hist, bin_width) =
        Histogram(var_tensor, min_val, max_val, precision_hist_num_bins);
    starting_iter = static_cast<int>(ending_iter * 0.7);
  } else {
    float th = std::max(std::abs(max_val), std::abs(min_val));
    std::tie(hist, bin_width) =
        Histogram(var_tensor, -th, th, precision_hist_num_bins);
    starting_iter = 0;
    if (std::abs(max_val) > std::abs(min_val)) {
      while (starting_iter < ending_iter) {
        if (hist[starting_iter] == 0) {
          ++starting_iter;
          continue;
        } else {
          break;
        }
      }
      starting_iter += static_cast<int>((ending_iter - starting_iter) * 0.6);
    } else {
      while (ending_iter > 0) {
        if (hist[ending_iter] == 0) {
          --ending_iter;
          continue;
        } else {
          break;
        }
      }
      starting_iter = static_cast<int>(0.6 * ending_iter);
    }
  }
  auto P_sum = eigen_tensor.size();
  int min_kl_divergence = 0;
  int min_kl_index = 0;
  bool kl_inited = false;
  for (int i = starting_iter; i <= ending_iter; i++) {
    std::vector<int> reference_distr_P(&hist[0], &hist[i]);
    auto outliers_count =
        std::accumulate(&hist[i], &hist[precision_hist_num_bins], 0);
    if (reference_distr_P[i - 1] == 0) {
      continue;
    }
    reference_distr_P[i - 1] += outliers_count;
    auto reference_distr_bins = reference_distr_P;
    std::vector<int> candidate_distr_Q(&hist[0], &hist[i]);
    int num_merged_bins = i / num_quantized_bins;
    std::vector<int> candidate_distr_Q_quantized(num_quantized_bins, 0);
    int j_start = 0;
    int j_end = num_merged_bins;
    for (int idx = 0; idx < num_quantized_bins; idx++) {
      candidate_distr_Q_quantized[idx] = std::accumulate(
          &candidate_distr_Q[j_start], &candidate_distr_Q[j_end], 0);
      j_start += num_merged_bins;
      j_end += num_merged_bins;
      if ((idx + 1) == num_quantized_bins - 1) {
        j_end = i;
      }
    }
    candidate_distr_Q =
        ExpandQuantizedBins(candidate_distr_Q_quantized, reference_distr_bins);
    int Q_sum =
        std::accumulate(candidate_distr_Q.begin(), candidate_distr_Q.end(), 0);
    auto kl_divergence =
        SafeEntropy(reference_distr_P, P_sum, candidate_distr_Q, Q_sum);
    if (!kl_inited) {
      min_kl_divergence = kl_divergence;
      min_kl_index = i;
      kl_inited = true;
    } else if (kl_divergence < min_kl_divergence) {
      min_kl_divergence = kl_divergence;
      min_kl_index = i;
    } else {
    }
  }
  if (min_kl_index == 0) {
    while (starting_iter > 0) {
      if (hist[starting_iter] == 0) {
        starting_iter -= 1;
        continue;
      } else {
        break;
      }
    }
    min_kl_index = starting_iter;
  }

350 351
  LoDTensor scale_tensor = CreateScaleTensor();
  scale_tensor.data<double>()[0] = 1.0 / ((min_kl_index + 0.5) * bin_width);
352 353 354 355 356 357 358 359 360 361 362 363

  return std::make_pair(is_unsigned, scale_tensor);
}

std::pair<bool, LoDTensor>
AnalysisPredictor::MkldnnQuantizer::GetMaxScalingFactor(
    const LoDTensor& var_tensor, bool is_unsigned) const {
  ConstEigenVectorArrayMap eigen_tensor{var_tensor.data<float>(),
                                        var_tensor.numel(), 1};
  float max_abs = eigen_tensor.abs().maxCoeff();
  float min_val = eigen_tensor.minCoeff();
  if (is_unsigned)
364 365 366 367 368
    PADDLE_ENFORCE_GE(
        min_val, 0.0f,
        platform::errors::InvalidArgument(
            "Tensor is claimed to be unsigned, but its min value (%f) is < 0.0",
            min_val));
369

370 371
  LoDTensor scale_tensor = CreateScaleTensor();
  scale_tensor.data<double>()[0] = 1.0 / max_abs;
372 373 374 375 376 377

  return std::make_pair(is_unsigned, scale_tensor);
}

std::pair<bool, LoDTensor>
AnalysisPredictor::MkldnnQuantizer::GetMaxChScalingFactor(
M
Michał Gallus 已提交
378
    const LoDTensor& var_tensor, bool is_unsigned, bool is_transposed) const {
379
  check_tensor(var_tensor);
380 381 382 383 384

  ConstEigenVectorArrayMap eigen_tensor{var_tensor.data<float>(),
                                        var_tensor.numel(), 1};
  float min_val = eigen_tensor.minCoeff();
  if (is_unsigned)
385 386 387 388 389
    PADDLE_ENFORCE_GE(
        min_val, 0.0f,
        platform::errors::InvalidArgument(
            "Tensor is claimed to be unsigned, but its min value (%f) is < 0.0",
            min_val));
390

M
Michał Gallus 已提交
391 392 393 394 395
  auto dims = var_tensor.dims();
  constexpr int num_col_dims = 1;
  auto flattened_dims = framework::flatten_to_2d(dims, num_col_dims);
  ConstEigenMatrixArrayMap eigen_tensor_mat{
      var_tensor.data<float>(), flattened_dims[0], flattened_dims[1]};
396

M
Michał Gallus 已提交
397 398 399 400 401
  EigenMatrixDoubleArray scales;
  if (is_transposed) {
    scales = 1.0 / eigen_tensor_mat.cast<double>().abs().colwise().maxCoeff();
  } else {
    scales = 1.0 / eigen_tensor_mat.cast<double>().abs().rowwise().maxCoeff();
402
  }
M
Michał Gallus 已提交
403 404 405 406 407
  int output_channel_axis = is_transposed;
  int channels = dims[output_channel_axis];
  LoDTensor scale_tensor = CreateScaleTensor(channels);
  auto* scale_ptr = scale_tensor.mutable_data<double>(CPUPlace());
  std::copy(scales.data(), scales.data() + scales.size(), scale_ptr);
408 409 410 411

  return std::make_pair(is_unsigned, scale_tensor);
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
std::pair<bool, LoDTensor>
AnalysisPredictor::MkldnnQuantizer::GetMaxChGRUScalingFactor(
    const LoDTensor& wx_tensor, const LoDTensor& wh_tensor) const {
  check_tensor(wx_tensor);
  check_tensor(wh_tensor);

  int OC = wh_tensor.dims()[0];
  std::vector<float> scale_ur(2 * OC);
  std::vector<float> scale_o(OC);

  for (int row_id = 0; row_id < wx_tensor.dims()[0]; row_id++) {
    for (int col_id = 0; col_id < 2 * OC; col_id++) {
      int idx = (row_id * wx_tensor.dims()[1]) + col_id;
      auto abs_value = std::abs(wx_tensor.data<float>()[idx]);
      if (row_id == 0) {
        scale_ur[col_id] = abs_value;
      } else {
        if (abs_value > scale_ur[col_id]) scale_ur[col_id] = abs_value;
      }
    }
  }

  for (int i = 0; i < 2 * OC * OC; i++) {
    int col_id = i % (2 * OC);
    auto abs_value = std::abs(wh_tensor.data<float>()[i]);
    if (abs_value > scale_ur[col_id]) scale_ur[col_id] = abs_value;
  }

  for (int row_id = 0; row_id < wx_tensor.dims()[0]; row_id++) {
    for (int col_id = 2 * OC; col_id < wx_tensor.dims()[1]; col_id++) {
      int idx = (row_id * wx_tensor.dims()[1]) + col_id;
      auto abs_value = std::abs(wx_tensor.data<float>()[idx]);
      if (row_id == 0) {
        scale_o[col_id % OC] = abs_value;
      } else {
        if (abs_value > scale_o[col_id]) scale_o[col_id % OC] = abs_value;
      }
    }
  }

  for (int i = 2 * OC * OC; i < OC * wh_tensor.dims()[1]; i++) {
    int col_id = i % OC;
    auto abs_value = std::abs(wh_tensor.data<float>()[i]);
    if (abs_value > scale_o[col_id]) scale_o[col_id] = abs_value;
  }
  scale_ur.insert(scale_ur.end(), scale_o.begin(), scale_o.end());
  transform(scale_ur.begin(), scale_ur.end(), scale_ur.begin(),
            [](float& c) { return 1 / c; });
  LoDTensor scale_tensor = CreateScaleTensor(scale_ur.size());
  auto* scale_ptr = scale_tensor.mutable_data<double>(CPUPlace());
  std::copy(scale_ur.begin(), scale_ur.end(), scale_ptr);
  bool is_unsigned = false;
  return std::make_pair(is_unsigned, scale_tensor);
}

467 468 469 470 471
std::pair<std::vector<int>, float>
AnalysisPredictor::MkldnnQuantizer::Histogram(
    const framework::LoDTensor& var_tensor, float min_val, float max_val,
    size_t num_bins) const {
  PADDLE_ENFORCE_GT(num_bins, 0,
472 473 474 475 476 477 478 479 480 481 482 483 484
                    platform::errors::InvalidArgument(
                        "MkldnnQuantizer: To calculate Histogram, num_bins (" +
                        std::to_string(num_bins) + ") must be positive."));
  PADDLE_ENFORCE_GT(var_tensor.numel(), 0,
                    platform::errors::InvalidArgument(
                        "MkldnnQuantizer: To calculate Histogram, the tensor "
                        "must not be empty."));
  PADDLE_ENFORCE_GE(max_val, min_val,
                    platform::errors::InvalidArgument(
                        "MkldnnQuantizer: To calculate Histogram, max_val (" +
                        std::to_string(max_val) + ") must be greater or equal"
                                                  "to min_val (" +
                        std::to_string(min_val) + ")."));
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
  ConstEigenVectorArrayMap eigen_tensor{var_tensor.data<float>(),
                                        var_tensor.numel(), 1};
  auto bin_width = std::abs(max_val - min_val) / num_bins;
  std::vector<int> hist(num_bins);

  for (int i = 0; i < eigen_tensor.size(); i++) {
    int bin = std::min(
        num_bins - 1,
        static_cast<size_t>(floor((eigen_tensor[i] - min_val) / bin_width)));
    ++hist[bin];
  }

  return std::make_pair(std::move(hist), std::move(bin_width));
}

500 501 502 503
void AnalysisPredictor::MkldnnQuantizer::ClearDeviceContext() const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(predictor_.place_);
504 505
  dev_ctx->ResetBlobMap(
      paddle::platform::MKLDNNDeviceContext::tls().get_curr_exec());
506 507
}

508 509 510 511 512 513
void AnalysisPredictor::MkldnnQuantizer::PrepareArgument() const {
  auto& arg = predictor_.argument_;
  if (!arg.scope_valid()) arg.SetScope(new framework::Scope);
  arg.SetMainProgramNotOwned(predictor_.inference_program_.get());
  auto graph = std::unique_ptr<Graph>(new Graph(arg.main_program()));
  arg.SetMainGraph(graph.release());
514
  auto* scope_ptr = arg.scope_ptr();
515 516
  PADDLE_ENFORCE_NOT_NULL(scope_ptr, platform::errors::PreconditionNotMet(
                                         "The scope should not be nullptr."));
517
  arg.main_graph().SetNotOwned(framework::ir::kParamScopeAttr, scope_ptr);
518 519 520

  auto* builder = predictor_.config_.pass_builder();
  builder->SetPasses({
521
      "cpu_quantize_pass", "cpu_quantize_squash_pass",
522 523 524 525 526
  });
  if (predictor_.config_.ir_debug_) builder->TurnOnDebug();
  auto passes = builder->AllPasses();
  predictor_.argument_.SetIrAnalysisPasses(passes);
  predictor_.argument_.SetAnalysisPasses(
527 528
      {"ir_graph_clean_pass", "ir_analysis_pass", "memory_optimize_pass",
       "ir_graph_to_program_pass"});
529 530 531 532 533 534
  predictor_.argument_.SetQuantVarScales(scales_);
}

bool AnalysisPredictor::MkldnnQuantizer::Quantize() {
  if (!RunWarmup()) return false;
  if (!CalculateScales()) return false;
535
  ClearDeviceContext();
536 537 538 539 540 541 542 543 544 545 546 547 548 549
  predictor_.PrepareScope(predictor_.scope_);
  predictor_.CreateExecutor();
  if (!RunQuantizePasses()) return false;
  predictor_.PrepareExecutor();
  predictor_.PrepareFeedFetch();
  return true;
}

bool AnalysisPredictor::MkldnnQuantizer::RunQuantizePasses() const {
  predictor_.executor_->CreateVariables(*predictor_.inference_program_, 0, true,
                                        predictor_.sub_scope_);
  PrepareArgument();
  auto& arg = predictor_.argument_;
  Analyzer().Run(&arg);
550 551 552
  PADDLE_ENFORCE_EQ(
      arg.scope_valid(), true,
      platform::errors::PreconditionNotMet("The scope should be valid."));
553 554 555 556 557 558 559 560 561 562 563 564 565 566
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&arg), ir_analyzed_program);
  predictor_.inference_program_.reset(
      new framework::ProgramDesc(arg.ir_analyzed_program()));
  LOG(INFO) << "== optimize 2 end ==";
  predictor_.executor_->CreateVariables(*predictor_.inference_program_, 0,
                                        false, predictor_.sub_scope_);
  return true;
}

bool AnalysisPredictor::MkldnnQuantizer::RunWarmup() const {
  VLOG(3) << "Predictor: run a quantization warmup iteration";
  auto warmup_data = qconfig_->warmup_data();
  PADDLE_ENFORCE_NOT_NULL(warmup_data,
567 568
                          platform::errors::PreconditionNotMet(
                              "Warmup data cannot be NULL in the config."));
569 570 571 572 573 574 575 576 577 578 579 580
  PrettyLogH1("--- Running warmup iteration for quantization");

  // Run the inference program
  std::vector<PaddleTensor> output_slots;
  predictor_.Run(*warmup_data, &output_slots, qconfig_->warmup_batch_size());

  return true;
}

float AnalysisPredictor::MkldnnQuantizer::SafeEntropy(
    std::vector<int> reference_distr_P, int P_sum,
    std::vector<int> candidate_distr_Q, int Q_sum) const {
581 582 583 584
  PADDLE_ENFORCE_EQ(reference_distr_P.size(), candidate_distr_Q.size(),
                    platform::errors::InvalidArgument(
                        "The P size %d should be equal to Q size %d",
                        reference_distr_P.size(), candidate_distr_Q.size()));
585 586 587 588 589 590 591 592 593
  float tmp_sum1 = 0;
  float tmp_sum2 = 0;
  for (size_t idx = 0; idx < reference_distr_P.size(); idx++) {
    int p_idx = reference_distr_P[idx];
    int q_idx = candidate_distr_Q[idx];
    if (p_idx == 0) {
      tmp_sum1 += 0;
      tmp_sum2 += 0;
    } else {
594 595 596 597 598
      PADDLE_ENFORCE_NE(
          q_idx, 0,
          platform::errors::PreconditionNotMet(
              "MkldnnQuantizer: Fatal error!, idx = " + std::to_string(idx) +
              " qindex = 0! p_idx = " + std::to_string(p_idx)));
599 600 601 602 603 604 605 606
    }
    tmp_sum1 += p_idx * (log(Q_sum * p_idx));
    tmp_sum2 += p_idx * (log(P_sum * q_idx));
  }
  return (tmp_sum1 - tmp_sum2) / P_sum;
}

}  // namespace paddle