config_parser.py 127.7 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''

import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
103
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
104 105 106
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
107
print = logger.info
Z
zhangjinchao01 已提交
108 109 110 111

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
112

Z
zhangjinchao01 已提交
113 114 115
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
L
Luo Tao 已提交
141 142 143
        g_add_submodel_suffix=False,

        # Whether current layer needs to pass the image height and width.
144 145 146
        # Default value is true, but if it encounters recurrent_layer_group,
        # it will be false. The reason is that image is converted to be sequence,
        # image height will be sequence length, and image width will be feature
L
Luo Tao 已提交
147 148
        # length of each timestep.
        g_pass_height_width=True, ):
Z
zhangjinchao01 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
165

Z
zhangjinchao01 已提交
166 167
g_config_funcs = {}

Q
qijun 已提交
168

Z
zhangjinchao01 已提交
169 170 171 172 173
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
174

Z
zhangjinchao01 已提交
175 176 177 178 179
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
180

Z
zhangjinchao01 已提交
181 182 183 184 185 186
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
187

Z
zhangjinchao01 已提交
188 189
    return wrap

Q
qijun 已提交
190

Z
zhangjinchao01 已提交
191 192 193
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
194

Z
zhangjinchao01 已提交
195 196 197
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
198

Z
zhangjinchao01 已提交
199 200 201
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
202

Z
zhangjinchao01 已提交
203 204 205 206 207 208
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
209

Z
zhangjinchao01 已提交
210 211
# functions available in config file

Q
qijun 已提交
212

Z
zhangjinchao01 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
231

232 233
@config_func
def HasInputsSet():
234
    return len(g_current_submodel.input_layer_names) != 0
235

Z
zhangjinchao01 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
260
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
261 262 263 264 265 266 267 268 269

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
270

Z
zhangjinchao01 已提交
271
@config_func
Q
qijun 已提交
272
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
273
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
274 275
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
276
    if name is not None:
Q
qijun 已提交
277 278 279
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
280 281 282

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
286 287
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
288 289
    return name + suffix

Q
qijun 已提交
290

Z
zhangjinchao01 已提交
291 292 293
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
294 295

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
296 297
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
298 299
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
300 301 302 303 304
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
305

Z
zhangjinchao01 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
329 330
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
331 332 333 334 335 336 337
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
338
    g_current_submodel.target_inlinkid = -1
Z
zhangjinchao01 已提交
339
    in_links_count = 0
340
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
341 342 343 344 345 346
        if isinstance(link, basestring):
            name = link
            has_subseq = False
        else:
            name = link.link_name
            has_subseq = link.has_subseq
347 348 349 350
        # assign target_inlinkid according to target_inlinkname
        if target_inlinkname == name:
            g_current_submodel.target_inlinkid = linkid

Z
zhangjinchao01 已提交
351 352 353
        if in_links_count == 0:
            in_links_has_subseq = has_subseq
        else:
Q
qijun 已提交
354 355 356 357
            config_assert(
                in_links_has_subseq == has_subseq,
                "The sequence type of in_links should be the same in RecurrentLayerGroup"
            )
Z
zhangjinchao01 已提交
358 359 360 361 362 363 364
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
        if has_subseq:
            SequenceScatterAgentLayer(name=name, size=layer.size)
        else:
            ScatterAgentLayer(name=name, size=layer.size)
365

Z
zhangjinchao01 已提交
366 367 368 369 370
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)
        pair.has_subseq = has_subseq

Q
qijun 已提交
371

Z
zhangjinchao01 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
        has_subseq = False
    else:
        name = link.link_name
        has_subseq = link.has_subseq
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name
    pair.has_subseq = has_subseq


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
388
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
389 390 391 392 393 394 395 396
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
397
                             target_inlinkname="",
Z
zhangjinchao01 已提交
398
                             seq_reversed=False):
Q
qijun 已提交
399
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed,
400
                                            target_inlinkname)
Z
zhangjinchao01 已提交
401 402 403 404 405
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
406 407 408 409 410
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
411 412 413 414 415 416 417


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
418
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
419
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
420 421
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        elif pair.has_subseq:
            SequenceGatherAgentLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
440

Z
zhangjinchao01 已提交
441 442 443 444 445 446
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
447

Z
zhangjinchao01 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
@config_class
class Bias(Cfg):
    def __init__(
            self,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            gradient_clipping_threshold=None,
            is_static=None,
Q
qijun 已提交
465
            is_shared=None, ):
Z
zhangjinchao01 已提交
466 467
        self.add_keys(locals())

Q
qijun 已提交
468

Z
zhangjinchao01 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
489
            bilinear_interp=None,
Z
zhangjinchao01 已提交
490 491 492 493
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
494
            maxout=None,
Q
qijun 已提交
495
            spp=None,
D
dangqingqing 已提交
496
            pad=None,
Z
zhangjinchao01 已提交
497 498 499 500 501
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
502
            input_layer_argument=None,
D
dangqingqing 已提交
503 504 505 506 507
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
Z
zhangjinchao01 已提交
508
        self.add_keys(locals())
D
dangqingqing 已提交
509 510 511
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
Z
zhangjinchao01 已提交
512

Q
qijun 已提交
513

Z
zhangjinchao01 已提交
514 515 516
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
517 518
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
519 520 521
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
522
            size=0,  # projection output size
Z
zhangjinchao01 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
542
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
556

Z
zhangjinchao01 已提交
557 558
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
559

Z
zhangjinchao01 已提交
560 561 562 563 564 565 566 567 568 569
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
570

Z
zhangjinchao01 已提交
571 572
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
573

Z
zhangjinchao01 已提交
574 575 576
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
577

Z
zhangjinchao01 已提交
578 579 580 581 582 583
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
584 585 586
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
587 588 589 590
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
591

Z
zhangjinchao01 已提交
592 593 594
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
595

Z
zhangjinchao01 已提交
596 597 598 599 600 601 602
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
603

Z
zhangjinchao01 已提交
604 605
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
606

Z
zhangjinchao01 已提交
607 608 609
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

L
Luo Tao 已提交
610

X
xuwei06 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
625

Z
zhangjinchao01 已提交
626 627 628 629 630 631
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
632

Z
zhangjinchao01 已提交
633 634 635
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
636

Z
zhangjinchao01 已提交
637 638 639 640 641 642
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
643

Z
zhangjinchao01 已提交
644 645 646
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
647

Z
zhangjinchao01 已提交
648 649 650 651 652 653
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
654

Z
zhangjinchao01 已提交
655 656 657
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
658

Z
zhangjinchao01 已提交
659 660 661 662
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
663 664
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


688
@config_class
689
class ConvBaseProjection(Projection):
Q
qijun 已提交
690 691 692 693 694
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
695
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
696 697 698 699 700 701 702 703 704 705 706 707

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
708 709
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
710 711 712 713 714 715 716

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
717

718 719 720 721 722 723 724 725 726 727 728
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvProjection, self).__init__(input_layer_name, **xargs)

729
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransProjection, self).__init__(input_layer_name, **xargs)

        parse_conv(
            conv_conf,
749
            self.input_layer_name,
750 751 752 753 754 755 756 757
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


Z
zhangjinchao01 已提交
758 759 760
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
761 762
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
763 764
    def __init__(
            self,
Q
qijun 已提交
765
            input_layer_names, ):
Z
zhangjinchao01 已提交
766 767 768 769 770 771 772 773 774 775
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
776

Z
zhangjinchao01 已提交
777 778 779
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
780 781 782

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
801 802 803 804 805 806 807

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
808 809 810
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

811 812
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
813
                   self.operator_conf.conv_conf, num_filters)
L
Luo Tao 已提交
814 815 816
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
Z
zhangjinchao01 已提交
817 818 819

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

820 821
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
822 823


824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


Z
zhangjinchao01 已提交
854 855 856
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None):
Z
zhangjinchao01 已提交
870 871
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
872
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
873
        if padding_y is None:
Q
qijun 已提交
874
            self.padding_y = padding
Z
zhangjinchao01 已提交
875
        if stride_y is None:
Q
qijun 已提交
876
            self.stride_y = stride
Z
zhangjinchao01 已提交
877
        if output_x is not None:
Q
qijun 已提交
878 879
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
880

L
liaogang 已提交
881 882
@config_class
class BilinearInterp(Cfg):
L
Luo Tao 已提交
883
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
L
liaogang 已提交
884 885
        self.add_keys(locals())

Q
qijun 已提交
886

Z
zhangjinchao01 已提交
887 888
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
889 890 891 892 893 894 895 896 897 898 899
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
900
        self.add_keys(locals())
Q
qijun 已提交
901 902


Q
qijun 已提交
903
@config_class
Q
qijun 已提交
904
class SpatialPyramidPool(Cfg):
L
Luo Tao 已提交
905
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
906
        self.add_keys(locals())
Z
zhangjinchao01 已提交
907

Q
qijun 已提交
908

D
dangqingqing 已提交
909 910 911 912 913 914
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())


Z
zhangjinchao01 已提交
915 916
@config_class
class Norm(Cfg):
Q
qijun 已提交
917 918 919 920 921 922 923 924 925
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
926 927
        self.add_keys(locals())

Q
qijun 已提交
928

Z
zhangjinchao01 已提交
929 930
@config_class
class Image(Cfg):
Q
qijun 已提交
931
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
932 933
        self.add_keys(locals())

Q
qijun 已提交
934

Z
zhangjinchao01 已提交
935 936
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
937 938 939 940 941 942 943 944 945 946 947 948
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
949 950
        self.add_keys(locals())

Q
qijun 已提交
951

952 953
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
954
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
955 956
        self.add_keys(locals())

Q
qijun 已提交
957

958
def create_data_config_proto(async_load_data=False,
959
                             constant_slots=None,
王益 已提交
960 961 962
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
Z
zhangjinchao01 已提交
963 964 965 966 967 968 969 970
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
971 972
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
973

Q
qijun 已提交
974
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
975 976 977 978 979 980
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
981

Z
zhangjinchao01 已提交
982
@config_func
Q
qijun 已提交
983 984 985 986 987
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
988
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
989 990 991 992 993 994 995 996 997
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
998

Z
zhangjinchao01 已提交
999
@config_func
Q
qijun 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1010
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1011 1012
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
1013

Z
zhangjinchao01 已提交
1014 1015 1016
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
1017

Z
zhangjinchao01 已提交
1018 1019 1020
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
1021 1022
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
1023
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
1024 1025 1026 1027
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1052

Z
zhangjinchao01 已提交
1053
@config_func
Q
qijun 已提交
1054 1055 1056 1057 1058 1059 1060
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
1061
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1081

Z
zhangjinchao01 已提交
1082 1083
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1084
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1085 1086 1087 1088 1089
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1090

Z
zhangjinchao01 已提交
1091
@config_func
Q
qijun 已提交
1092 1093 1094 1095 1096 1097 1098
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1099

1100
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1134

L
Luo Tao 已提交
1135 1136
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1137 1138 1139 1140 1141 1142 1143
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1144

1145
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
L
Luo Tao 已提交
1146
#It is the reverse function of cnn_output_size
1147
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
L
Luo Tao 已提交
1148 1149 1150
    img_size = (output_size - 1) * stride + filter_size - 2 * padding
    if not caffe_mode:
        img_size = img_size + 1
1151 1152
    return img_size

Q
qijun 已提交
1153

L
Luo Tao 已提交
1154
def get_img_size(input_layer_name, channels):
L
Luo Tao 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1173
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
Z
zhangjinchao01 已提交
1174
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1175 1176 1177
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
Z
zhangjinchao01 已提交
1178
                  "['max-projection', 'avg-projection', "
Q
qijun 已提交
1179
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1180 1181 1182 1183 1184 1185

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1186
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1187

L
Luo Tao 已提交
1188
    pool_conf.img_size, pool_conf.img_size_y = \
L
Luo Tao 已提交
1189
        get_img_size(input_layer_name, pool.channels)
Z
zhangjinchao01 已提交
1190

1191
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1192

1193
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1194
        pool_conf.padding = pool.padding
1195
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1196 1197
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1198
                                         not ceil_mode)
D
dangqingqing 已提交
1199 1200
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1201
                                         pool_conf.stride_y, not ceil_mode)
Q
qijun 已提交
1202

Z
zhangjinchao01 已提交
1203

Q
qijun 已提交
1204
def parse_spp(spp, input_layer_name, spp_conf):
L
Luo Tao 已提交
1205
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1206 1207
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1208 1209
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1210
    spp_conf.pyramid_height = spp.pyramid_height
Q
qijun 已提交
1211

Q
qijun 已提交
1212

Z
zhangjinchao01 已提交
1213 1214
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
L
Luo Tao 已提交
1215
    image_conf.img_size, image_conf.img_size_y = \
L
Luo Tao 已提交
1216
        get_img_size(input_layer_name, image_conf.channels)
Q
qijun 已提交
1217

Z
zhangjinchao01 已提交
1218 1219 1220 1221

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
    config_assert(norm.norm_type in ['rnorm', 'cmrnorm-projection'],
Q
qijun 已提交
1222 1223
                  "norm-type %s is not in [rnorm, 'cmrnorm-projection']" %
                  norm.norm_type)
Z
zhangjinchao01 已提交
1224 1225 1226 1227 1228 1229
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

L
Luo Tao 已提交
1230
    norm_conf.img_size, norm_conf.img_size_y = \
L
Luo Tao 已提交
1231
        get_img_size(input_layer_name, norm.channels)
Z
zhangjinchao01 已提交
1232
    norm_conf.output_x = norm_conf.img_size
L
Luo Tao 已提交
1233
    norm_conf.output_y = norm_conf.img_size_y
Z
zhangjinchao01 已提交
1234 1235 1236
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1237 1238
        norm_conf.scale /= norm.size**2

1239

L
Luo Tao 已提交
1240 1241
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1242
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
Q
qijun 已提交
1252

1253
    if not trans:
1254
        conv_conf.filter_channels = conv.channels / conv.groups
L
Luo Tao 已提交
1255
        conv_conf.img_size, conv_conf.img_size_y = \
L
Luo Tao 已提交
1256
            get_img_size(input_layer_name, conv.channels)
1257
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1258 1259
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1260 1261 1262
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1263
    else:
1264
        conv_conf.filter_channels = num_filters / conv.groups
L
Luo Tao 已提交
1265
        conv_conf.output_x, conv_conf.output_y = \
L
Luo Tao 已提交
1266
            get_img_size(input_layer_name, conv.channels)
1267
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1268 1269
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1270
        conv_conf.img_size_y = cnn_image_size(
L
Luo Tao 已提交
1271 1272
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
Q
qijun 已提交
1273

1274

Z
zhangjinchao01 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1288
        block_expand_conf.output_x = cnn_output_size(
1289
            block_expand.img_size_x, block_expand.block_x,
1290
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1291 1292

    if block_expand_conf.img_size_y == 0:
1293
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1294
    else:
1295
        block_expand_conf.output_y = cnn_output_size(
1296
            block_expand.img_size_y, block_expand.block_y,
1297
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1298

Q
qijun 已提交
1299

1300
def parse_maxout(maxout, input_layer_name, maxout_conf):
L
Luo Tao 已提交
1301
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1302
    maxout_conf.groups = maxout.groups
1303

Q
qijun 已提交
1304

Z
zhangjinchao01 已提交
1305 1306 1307 1308 1309 1310
# Define an evaluator
@config_func
def Evaluator(
        name,
        type,
        inputs,
Q
qijun 已提交
1311 1312 1313 1314 1315 1316 1317
        chunk_scheme=None,
        num_chunk_types=None,
        classification_threshold=None,
        positive_label=None,
        dict_file=None,
        result_file=None,
        num_results=None,
L
Liang Zhao 已提交
1318
        top_k=None,
1319 1320
        delimited=None,
        excluded_chunk_types=None, ):
Z
zhangjinchao01 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
L
Liang Zhao 已提交
1346 1347
    if top_k is not None:
        evaluator.top_k = top_k
1348 1349
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1350

1351 1352 1353
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Q
qijun 已提交
1354

Z
zhangjinchao01 已提交
1355 1356 1357 1358 1359
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1360
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1361 1362 1363 1364
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
1365
            coeff=None):
Z
zhangjinchao01 已提交
1366
        config_assert('@' not in name,
Q
qijun 已提交
1367
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1383
        assert isinstance(self.config, LayerConfig)
Z
zhangjinchao01 已提交
1384 1385 1386
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1387 1388
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1389 1390 1391 1392 1393 1394 1395
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1396
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405
            self.config.device = g_default_device

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1406 1407
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1408 1409 1410 1411 1412 1413 1414 1415
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1416
                self.operators.append(input)
Z
zhangjinchao01 已提交
1417 1418 1419 1420
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1421
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1422
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1423 1424
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

L
Luo Tao 已提交
1436 1437 1438 1439 1440 1441
        if self.config.type != 'data' and g_pass_height_width:
            height = self.get_input_layer(0).height
            width = self.get_input_layer(0).width
            if height and width:
                self.set_layer_height_width(height, width)

Z
zhangjinchao01 已提交
1442 1443 1444 1445 1446 1447
    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1448
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1449
            size,
Q
qijun 已提交
1450 1451 1452
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1453 1454 1455 1456 1457 1458

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1459 1460 1461
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1471 1472
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1473 1474 1475
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1476 1477
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1489 1490
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1491
                    is_static=bias.is_static,
Q
qijun 已提交
1492
                    is_shared=bias.is_shared, )
Z
zhangjinchao01 已提交
1493 1494 1495 1496 1497
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1498 1499 1500 1501 1502 1503
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1518 1519
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1520 1521
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1522 1523
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1524 1525 1526 1527 1528 1529
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1530
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1543 1544
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1545 1546 1547 1548
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
Q
qijun 已提交
1549
            update_hooks=input_config.update_hooks)
Z
zhangjinchao01 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

L
Luo Tao 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

Q
qijun 已提交
1576

Z
zhangjinchao01 已提交
1577 1578
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1579 1580 1581
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1582 1583
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1584

Z
zhangjinchao01 已提交
1585 1586
@config_layer('fc')
class FCLayer(LayerBase):
Q
qijun 已提交
1587
    def __init__(self, name, size, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
        super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"

            if sparse:
                psize = self.inputs[input_index].nnz
1598 1599
            else:
                sparse = None
Z
zhangjinchao01 已提交
1600

Q
qijun 已提交
1601 1602
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1603 1604
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1605

Z
zhangjinchao01 已提交
1606 1607
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1638 1639
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1652 1653
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1654 1655
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1656

1657 1658
@config_layer('print')
class PrintLayer(LayerBase):
Q
qijun 已提交
1659
    def __init__(self, name, inputs):
1660 1661
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)

Q
qijun 已提交
1662

Y
yuan 已提交
1663 1664
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1665 1666
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1667
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
G
gaoyuan 已提交
1668
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1669 1670 1671 1672 1673 1674 1675
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
G
gaoyuan 已提交
1676
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1677 1678 1679 1680 1681 1682
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

Q
qijun 已提交
1683

Z
zhangjinchao01 已提交
1684 1685
@config_layer('data')
class DataLayer(LayerBase):
L
Luo Tao 已提交
1686
    def __init__(self, name, size, height=None, width=None, device=None):
Q
qijun 已提交
1687 1688
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
L
Luo Tao 已提交
1689 1690
        if height and width:
            self.set_layer_height_width(height, width)
Q
qijun 已提交
1691

Z
zhangjinchao01 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
1719 1720


Z
zhangjinchao01 已提交
1721 1722
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
1723
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
1735

Z
zhangjinchao01 已提交
1736 1737 1738
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
1739 1740

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
1741 1742 1743 1744 1745 1746 1747 1748
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        config_assert(len(self.inputs) == 1)
        config_assert(self.input_layer.size % partial_sum == 0)
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

Q
qijun 已提交
1749

Z
zhangjinchao01 已提交
1750 1751 1752
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
1753 1754 1755 1756 1757 1758 1759 1760

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
Q
qijun 已提交
1777
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
L
Luo Tao 已提交
1790 1791
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
Z
zhangjinchao01 已提交
1792 1793
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
L
Luo Tao 已提交
1794 1795
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
Z
zhangjinchao01 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1806

Z
zhangjinchao01 已提交
1807 1808 1809 1810
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
1811

Z
zhangjinchao01 已提交
1812 1813 1814 1815
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

1816 1817 1818 1819

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
1820 1821 1822 1823 1824 1825 1826 1827

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
1828
        super(ConvTransLayerBase, self).__init__(
1829 1830 1831 1832 1833 1834 1835 1836
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
1848 1849 1850 1851 1852 1853 1854 1855
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
1856
            parse_conv(
1857 1858
                self.inputs[input_index].conv,
                input_layer.name,
1859
                self.config.inputs[input_index].conv_conf,
1860
                num_filters,
1861
                trans=True)
1862 1863 1864
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
1865 1866
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
1867 1868 1869 1870 1871 1872 1873

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
1874
        return conv_conf.channels * conv_conf.filter_channels \
1875 1876
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1877

1878 1879 1880 1881
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
1882

1883 1884 1885 1886 1887
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


Z
zhangjinchao01 已提交
1888 1889
@config_layer('norm')
class NormLayer(LayerBase):
1890 1891
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1892 1893 1894
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
L
Luo Tao 已提交
1895 1896 1897 1898
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
Q
qijun 已提交
1899

Z
zhangjinchao01 已提交
1900 1901 1902

@config_layer('pool')
class PoolLayer(LayerBase):
1903 1904
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1905 1906 1907
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
L
Luo Tao 已提交
1908
            parse_pool(self.inputs[input_index].pool, input_layer.name,
1909
                       pool_conf, ceil_mode)
L
Luo Tao 已提交
1910 1911
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
Q
qijun 已提交
1912

Z
zhangjinchao01 已提交
1913

Q
qijun 已提交
1914 1915
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
1916
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
1917
        super(SpatialPyramidPoolLayer, self).__init__(
1918
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
1919 1920 1921
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
L
Luo Tao 已提交
1922 1923 1924
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
1925

Q
qijun 已提交
1926

D
dangqingqing 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


Z
zhangjinchao01 已提交
1946 1947 1948
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

    def __init__(self,
                 name,
                 inputs,
                 active_type="linear",
                 bias=True,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
Z
zhangjinchao01 已提交
1959 1960 1961 1962
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
1963 1964
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
1965 1966 1967 1968 1969 1970 1971 1972
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
1973 1974 1975 1976 1977 1978
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
1979
                    is_shared=is_shared,
D
dangqingqing 已提交
1980
                    make_layer_name_in_submodel=False, ))
Z
zhangjinchao01 已提交
1981 1982 1983 1984 1985 1986 1987

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
            ((not parallel_nn) or self.config.device > -1) and \
1988
            cudnn_version >= 4007
Z
zhangjinchao01 已提交
1989
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
Q
qijun 已提交
1990 1991 1992 1993 1994 1995 1996
        super(BatchNormLayer, self).__init__(
            name,
            self.layer_type,
            0,
            active_type=active_type,
            inputs=inputs,
            **xargs)
Z
zhangjinchao01 已提交
1997 1998 1999 2000 2001 2002

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

Q
qijun 已提交
2003
        input_layer = self.get_input_layer(0)
Z
zhangjinchao01 已提交
2004
        image_conf = self.config.inputs[0].image_conf
L
Luo Tao 已提交
2005
        parse_image(self.inputs[0].image, input_layer.name, image_conf)
2006

2007 2008
        # Only pass the width and height of input to batch_norm layer
        # when either of it is non-zero.
2009 2010
        if input_layer.width != 0 or input_layer.height != 0:
            self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
D
dangqingqing 已提交
2011
                               image_conf.channels, False)
2012 2013
        else:
            self.set_layer_size(input_layer.size)
Z
zhangjinchao01 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
2026

Z
zhangjinchao01 已提交
2027 2028
@config_layer('trans')
class TransLayer(LayerBase):
2029
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2030
        super(TransLayer, self).__init__(
2031
            name, 'trans', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2032 2033 2034
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
2035 2036
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
2037

Z
zhangjinchao01 已提交
2038 2039
@config_layer('resize')
class ResizeLayer(LayerBase):
2040
    def __init__(self, name, size, inputs, **xargs):
Q
qijun 已提交
2041
        super(ResizeLayer, self).__init__(
2042
            name, 'resize', size=size, inputs=inputs, **xargs)
Q
qijun 已提交
2043 2044 2045 2046
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
2047

2048 2049
@config_layer('rotate')
class RotateLayer(LayerBase):
H
Haonan 已提交
2050
    def __init__(self, name, inputs, height, width, device=None):
2051 2052 2053 2054 2055
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
H
Haonan 已提交
2056
        self.set_layer_height_width(height, width)
2057 2058 2059
        self.set_layer_size(self.get_input_layer(0).size)


Z
zhangjinchao01 已提交
2060 2061
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2062
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2063
        super(BlockExpandLayer, self).__init__(
2064
            name, 'blockexpand', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2065 2066
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
2067 2068
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
2069
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
2070 2071 2072 2073 2074 2075
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
2076

2077 2078
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
2079 2080 2081
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2082 2083
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
L
Luo Tao 已提交
2084
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
L
Luo Tao 已提交
2085 2086 2087
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
        self.set_cnn_layer(name, g_layer_map[input_layer.name].height,
                           g_layer_map[input_layer.name].width, out_channels)
Q
qijun 已提交
2088

2089

Z
zhangjinchao01 已提交
2090 2091 2092 2093
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
2094

Z
zhangjinchao01 已提交
2095 2096 2097
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
2098 2099
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
2100

Q
qijun 已提交
2101
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
2102 2103 2104
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
2105

Z
zhangjinchao01 已提交
2106 2107 2108 2109 2110 2111 2112 2113
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
X
xuwei06 已提交
2114
define_cost('SumCost', 'sum_cost')
Z
zhangjinchao01 已提交
2115

Q
qijun 已提交
2116

Z
zhangjinchao01 已提交
2117 2118
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
2119
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
2120 2121
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
2122 2123 2124
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2125 2126 2127 2128 2129 2130 2131 2132
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
2133

Z
zhangjinchao01 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2158 2159


Z
zhangjinchao01 已提交
2160 2161
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2162
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2163 2164
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2165
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2166 2167
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2168 2169 2170
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2171 2172
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2173

Z
zhangjinchao01 已提交
2174 2175
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2176 2177 2178 2179 2180 2181 2182 2183
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2184
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2185 2186
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2187 2188
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2189 2190 2191 2192
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2193
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2194 2195 2196
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2197 2198 2199 2200 2201

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2202
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2203 2204 2205 2206
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2207 2208
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
Q
qijun 已提交
2222
    def __init__(self, name, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
2223 2224
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2225
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
Z
zhangjinchao01 已提交
2226 2227 2228 2229 2230
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2231

Z
zhangjinchao01 已提交
2232 2233
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2234 2235 2236 2237
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2238 2239 2240

@config_layer('sequence_agent')
class SequenceAgentLayer(LayerBase):
Q
qijun 已提交
2241
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2242 2243 2244
        super(SequenceAgentLayer, self).__init__(
            name, 'sequence_agent', size, inputs=[], device=device)

Q
qijun 已提交
2245

Z
zhangjinchao01 已提交
2246 2247
@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2248
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2249 2250 2251
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2252

Z
zhangjinchao01 已提交
2253 2254
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
Q
qijun 已提交
2255
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2256 2257 2258
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)

Q
qijun 已提交
2259

Z
zhangjinchao01 已提交
2260 2261
@config_layer('sequence_gather_agent')
class SequenceGatherAgentLayer(LayerBase):
Q
qijun 已提交
2262
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2263
        super(SequenceGatherAgentLayer, self).__init__(
Q
qijun 已提交
2264 2265
            name, 'sequence_gather_agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2266 2267 2268

@config_layer('sequence_scatter_agent')
class SequenceScatterAgentLayer(LayerBase):
Q
qijun 已提交
2269
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2270
        super(SequenceScatterAgentLayer, self).__init__(
Q
qijun 已提交
2271 2272
            name, 'sequence_scatter_agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2273 2274 2275

@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2276 2277 2278 2279 2280
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2281
        for i in range(1, len(inputs)):
Q
qijun 已提交
2282 2283 2284 2285 2286
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2287 2288

@config_func
Q
qijun 已提交
2289 2290 2291
def Link(
        name,
        has_subseq=False, ):
Z
zhangjinchao01 已提交
2292 2293 2294 2295 2296
    link_config = LinkConfig()
    link_config.link_name = name
    link_config.has_subseq = has_subseq
    return link_config

Q
qijun 已提交
2297

Z
zhangjinchao01 已提交
2298 2299
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2300 2301 2302 2303
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
Z
zhangjinchao01 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
Z
zhangjinchao01 已提交
2327 2328 2329 2330 2331
    if is_sequence:
        agent_layer = SequenceAgentLayer(agent_name, size)
    else:
        agent_layer = AgentLayer(agent_name, size)
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2332
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2333
    memory = g_current_submodel.memories.add()
2334 2335
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
2336 2337
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
    memory.is_sequence = is_sequence
Q
qijun 已提交
2338
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2339
                   boot_with_const_id is not None))
Q
qijun 已提交
2340 2341 2342 2343
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2344 2345 2346
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2347 2348
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2349 2350 2351
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2352
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2353 2354 2355 2356 2357
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2358

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


Z
zhangjinchao01 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
2381 2382 2383 2384
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
2394

Z
zhangjinchao01 已提交
2395 2396
@config_layer('expand')
class ExpandLayer(LayerBase):
2397
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
Q
qijun 已提交
2398
        super(ExpandLayer, self).__init__(
2399
            name, 'expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2400 2401 2402 2403 2404 2405 2406 2407
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
2408 2409 2410

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
Q
qijun 已提交
2411 2412 2413 2414 2415 2416
    def __init__(self, name, inputs, device=None, num_filters=None, bias=False):
        super(FeatMapExpandLayer, self).__init__(
            name, 'featmap_expand', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
2417
            self.config.num_filters = num_filters
Q
qijun 已提交
2418
        else:
Z
zhangjinchao01 已提交
2419
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
Q
qijun 已提交
2420
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
2421 2422 2423 2424


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
2425 2426 2427 2428 2429 2430
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 active_type='linear',
                 bias=False,
2431 2432
                 output_max_index=None,
                 **xargs):
2433
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2434
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
Q
qijun 已提交
2435 2436
        self.config.trans_type = trans_type
        self.config.active_type = active_type
Z
zhangjinchao01 已提交
2437 2438 2439 2440
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2441 2442
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
2443 2444 2445 2446


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
2447
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
2465
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
2466 2467 2468
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
2469
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
2470 2471
        self.config.eos_id = eos_id

Q
qijun 已提交
2472

Z
zhangjinchao01 已提交
2473 2474
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
2475 2476 2477 2478 2479
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 trans_type='non-seq',
2480 2481
                 bias=False,
                 **xargs):
Q
qijun 已提交
2482 2483 2484 2485 2486
        super(SequenceLastInstanceLayer, self).__init__(
            name,
            'seqlastins',
            0,
            inputs=inputs,
2487 2488
            active_type=active_type,
            **xargs)
Q
qijun 已提交
2489 2490 2491
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2492 2493 2494 2495 2496
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2497

Z
zhangjinchao01 已提交
2498 2499
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
2500 2501 2502 2503 2504 2505 2506
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 trans_type='non-seq',
                 bias=False,
                 **xargs):
Q
qijun 已提交
2507
        super(SequenceFirstInstanceLayer, self).__init__(
T
Tao Luo 已提交
2508
            name, inputs=inputs, active_type=active_type, bias=bias, **xargs)
Q
qijun 已提交
2509
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2510 2511
        self.config.select_first = True

Q
qijun 已提交
2512

Z
zhangjinchao01 已提交
2513 2514
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
2515
    def __init__(self, name, inputs, active_type='linear', bias=False, **xargs):
Q
qijun 已提交
2516 2517 2518 2519 2520
        super(SequenceConcatLayer, self).__init__(
            name,
            'seqconcat',
            0,
            inputs=inputs,
2521 2522
            active_type=active_type,
            **xargs)
Q
qijun 已提交
2523 2524
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
2525 2526 2527 2528 2529
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2530

Z
zhangjinchao01 已提交
2531 2532
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
Q
qijun 已提交
2533 2534 2535 2536 2537
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_type='linear',
2538 2539
                 bias=False,
                 **xargs):
Q
qijun 已提交
2540 2541 2542
        super(SequenceReshapeLayer, self).__init__(
            name,
            'seqreshape',
Z
zhangjinchao01 已提交
2543
            size,
Q
qijun 已提交
2544
            inputs=inputs,
2545 2546
            active_type=active_type,
            **xargs)
Q
qijun 已提交
2547 2548
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2549 2550 2551
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2552

Z
zhangjinchao01 已提交
2553 2554
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
2555
    def __init__(self, name, inputs, active_type='linear', bias=False, **xargs):
Q
qijun 已提交
2556
        super(SubSequenceLayer, self).__init__(
2557
            name, 'subseq', 0, inputs=inputs, active_type=active_type, **xargs)
Z
zhangjinchao01 已提交
2558 2559 2560 2561 2562 2563
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2564

Z
zhangjinchao01 已提交
2565 2566
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
2567 2568 2569
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2570 2571 2572 2573 2574
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
2575

Z
zhangjinchao01 已提交
2576 2577
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
2578 2579 2580
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2581 2582 2583 2584
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2585 2586 2587
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
2588 2589 2590

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
2591 2592 2593
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2594 2595 2596 2597 2598 2599
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2600

Z
zhangjinchao01 已提交
2601 2602
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
2603 2604 2605
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2606 2607 2608 2609
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2610 2611 2612
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
2613 2614 2615

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
2616 2617 2618
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2619 2620 2621 2622
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2623

Z
zhangjinchao01 已提交
2624 2625
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
2626
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
2627
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
2628 2629 2630
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
2631 2632 2633
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
2634 2635
        self.set_layer_size(size)

Q
qijun 已提交
2636

Z
zhangjinchao01 已提交
2637 2638
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
2639
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2640 2641
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
2642 2643
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
2644 2645 2646 2647 2648 2649 2650 2651
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
2652

L
liaogang 已提交
2653 2654
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
2655
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
2656
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
2657
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
2658
        input_layer = self.get_input_layer(0)
L
Luo Tao 已提交
2659 2660 2661 2662
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
Q
qijun 已提交
2663

L
liaogang 已提交
2664

Z
zhangjinchao01 已提交
2665 2666
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
2667
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2668
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
2669 2670 2671
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
2672 2673 2674
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2675

Z
zhangjinchao01 已提交
2676 2677
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
2678
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
2679
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
2680
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2681
        self.config.cos_scale = cos_scale
Q
qijun 已提交
2682 2683
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
2684 2685 2686
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
2687

Q
qijun 已提交
2688

Z
zhangjinchao01 已提交
2689 2690
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
2691
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2692 2693
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
2694 2695
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
2708 2709 2710 2711 2712 2713
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
                 active_type='linear',
2714 2715
                 bias=False,
                 **xargs):
Q
qijun 已提交
2716
        super(AverageLayer, self).__init__(
2717
            name, 'average', 0, inputs=inputs, active_type=active_type, **xargs)
Z
zhangjinchao01 已提交
2718
        self.config.average_strategy = average_strategy
Q
qijun 已提交
2719
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2720 2721 2722 2723 2724 2725
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2726

Z
zhangjinchao01 已提交
2727 2728
@config_layer('cos')
class CosSimLayer(LayerBase):
2729
    def __init__(self, name, inputs, cos_scale=1, device=None):
Z
zhangjinchao01 已提交
2730 2731 2732 2733 2734 2735
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
2736
        self.config.cos_scale = cos_scale
Z
zhangjinchao01 已提交
2737 2738 2739 2740


@config_layer('tensor')
class TensorLayer(LayerBase):
2741
    def __init__(self, name, size, inputs, bias=True, **xargs):
Q
qijun 已提交
2742
        super(TensorLayer, self).__init__(
2743
            name, 'tensor', size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2744 2745
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
2746 2747
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
Q
qijun 已提交
2758 2759 2760 2761 2762 2763 2764
    def __init__(self,
                 name,
                 inputs,
                 size=0,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
Z
zhangjinchao01 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
2782
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2783 2784 2785
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
2786
            else:
2787 2788
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
2789 2790 2791 2792
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2793 2794 2795 2796
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
2797 2798 2799
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
2800
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
2801 2802 2803
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
2804
            elif isinstance(input, Projection):
Q
qijun 已提交
2805 2806 2807 2808 2809 2810
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
2822 2823
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

2835 2836 2837 2838 2839 2840
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
2841

2842 2843 2844
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
2845

2846 2847
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
2848

Q
qijun 已提交
2849

Z
zhangjinchao01 已提交
2850 2851
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
2852
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
2853 2854
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
2855

Z
zhangjinchao01 已提交
2856 2857
@config_layer('concat')
class ConcatenateLayer(LayerBase):
Q
qijun 已提交
2858
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2859
        config_assert(inputs, 'inputs cannot be empty')
2860
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
2861 2862 2863 2864 2865 2866
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
2867
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2868 2869 2870 2871
                size += input_layer.size

        self.set_layer_size(size)

Q
qijun 已提交
2872

Z
zhangjinchao01 已提交
2873 2874 2875
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
2876
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2877 2878 2879
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
2880 2881

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
2882 2883 2884 2885 2886 2887
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
2888

Z
zhangjinchao01 已提交
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
2909
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2910
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
2911
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2912 2913
            self.create_input_parameter(input_index, psize, dims)

2914 2915 2916 2917 2918 2919 2920
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

2921 2922 2923
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
2924

Q
qijun 已提交
2925

Z
zhangjinchao01 已提交
2926 2927
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
2928
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
2929 2930
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
2931 2932 2933 2934 2935 2936 2937 2938 2939
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2940

Z
zhangjinchao01 已提交
2941 2942
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
2943 2944 2945 2946 2947 2948 2949 2950
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2951 2952 2953 2954 2955 2956 2957 2958
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
2959
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2960 2961 2962 2963 2964
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
2965

Z
zhangjinchao01 已提交
2966 2967
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
2978 2979 2980
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
2981 2982 2983 2984 2985
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2986 2987 2988
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
2989

Z
zhangjinchao01 已提交
2990 2991 2992
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
2993 2994 2995 2996
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2997 2998 2999 3000
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
3001

Z
zhangjinchao01 已提交
3002 3003
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
3004 3005 3006 3007 3008 3009 3010 3011
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3012 3013
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
3014 3015 3016 3017
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3018 3019
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
3020
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
3021
        self.set_layer_size(size)
Q
qijun 已提交
3022
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3023 3024 3025
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3026 3027
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
3028
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
3029 3030
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
3031 3032 3033

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
3045 3046 3047 3048 3049 3050
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3051
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3052 3053 3054
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3055

Z
zhangjinchao01 已提交
3056 3057
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
3058 3059 3060 3061 3062 3063 3064
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3065 3066
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
3067 3068 3069
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3070 3071 3072 3073 3074
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
H
Haonan 已提交
3075
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
Z
zhangjinchao01 已提交
3076 3077
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3078

Z
zhangjinchao01 已提交
3079 3080 3081 3082 3083 3084 3085
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
3086 3087


Z
zhangjinchao01 已提交
3088 3089
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
3090
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
3091
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
3092 3093
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3094
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3095 3096
        self.config.coeff = coeff

Q
qijun 已提交
3097

Z
zhangjinchao01 已提交
3098 3099 3100 3101 3102 3103 3104 3105
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
3106 3107


Z
zhangjinchao01 已提交
3108 3109
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
3110
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3111 3112 3113 3114 3115
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3116
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3117

Q
qijun 已提交
3118

Z
zhangjinchao01 已提交
3119 3120
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
3121
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
3122 3123 3124 3125
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
3126

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3148 3149
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3150
    def __init__(self, name, device=None):
L
Luo Tao 已提交
3151 3152
        global g_pass_height_width
        g_pass_height_width = False
Z
zhangjinchao01 已提交
3153 3154 3155 3156 3157 3158
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3159
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3160 3161 3162 3163
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3164
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3165
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3166

Q
qijun 已提交
3167

Z
zhangjinchao01 已提交
3168
@config_func
Q
qijun 已提交
3169
def ParameterHook(type, **kwargs):
Z
zhangjinchao01 已提交
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
    if type == 'pruning':
        mask_filename = kwargs.get('mask_filename', None)
        assert mask_filename is not None
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        hook.purning_mask_filename = mask_filename
        return hook
    else:
        return None


@config_func
Q
qijun 已提交
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
              update_hooks=None):
Z
zhangjinchao01 已提交
3204 3205 3206 3207 3208 3209 3210

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3222 3223
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3224 3225 3226 3227 3228

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3229 3230 3231 3232
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3233

Q
qijun 已提交
3234 3235
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3236 3237 3238
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3239 3240 3241 3242 3243 3244
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3245 3246
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3247 3248
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3249 3250
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
3251 3252 3253 3254 3255 3256
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
3257 3258 3259
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
3260 3261 3262 3263
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3264 3265 3266 3267 3268 3269 3270

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3271 3272 3273 3274
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3275 3276
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
            update_hooks = update_hooks(para.name)

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
            para.update_hooks.extend(update_hooks)

    g_parameter_map[name] = para


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
3298

Z
zhangjinchao01 已提交
3299 3300 3301 3302 3303
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
3304

Z
zhangjinchao01 已提交
3305 3306 3307 3308 3309
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
3310

Z
zhangjinchao01 已提交
3311 3312 3313 3314 3315
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
3316

Z
zhangjinchao01 已提交
3317 3318 3319 3320 3321
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
3322

Z
zhangjinchao01 已提交
3323 3324 3325 3326 3327
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
3328

Z
zhangjinchao01 已提交
3329 3330 3331 3332 3333
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
3334

Z
zhangjinchao01 已提交
3335 3336 3337 3338 3339
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
3340

Z
zhangjinchao01 已提交
3341 3342 3343 3344 3345
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
3346

Z
zhangjinchao01 已提交
3347 3348 3349 3350 3351
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
3352

Z
zhangjinchao01 已提交
3353 3354 3355 3356 3357
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
3358

Z
zhangjinchao01 已提交
3359 3360 3361 3362 3363
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
3364 3365 3366
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
3367 3368
    return Import

Q
qijun 已提交
3369

Z
zhangjinchao01 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
settings = dict(
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
3398 3399 3400
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
3401

Q
qijun 已提交
3402
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
3403 3404 3405 3406

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
3407 3408
    start_pass=0, )

Z
zhangjinchao01 已提交
3409 3410 3411 3412 3413

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
3414 3415
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
3427

Z
zhangjinchao01 已提交
3428 3429 3430 3431
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
3432

Z
zhangjinchao01 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
3442

Z
zhangjinchao01 已提交
3443 3444 3445 3446
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
3447

Z
zhangjinchao01 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
3463
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
3464 3465 3466 3467 3468

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
3469

Z
zhangjinchao01 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
3486

Z
zhangjinchao01 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
3499

Z
zhangjinchao01 已提交
3500 3501 3502 3503
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
3504

3505
_parse_config_hooks = set()
Y
Yu Yang 已提交
3506 3507


3508 3509 3510 3511 3512 3513 3514
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
Q
qijun 已提交
3515

Y
Yu Yang 已提交
3516

3517
def update_g_config():
Z
zhangjinchao01 已提交
3518
    '''
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


def parse_config(trainer_config, config_arg_str):
    '''
    @param trainer_config: can be a string of config file name or a function name
    with config logic
Z
zhangjinchao01 已提交
3546 3547 3548 3549
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
    init_config_environment()
3550 3551
    for hook in _parse_config_hooks:
        hook()
Z
zhangjinchao01 已提交
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578

    config_args = {}

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

    g_config.model_config.type = 'nn'

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel

3579 3580
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
3581
            make_config_environment("", config_args))
3582
        trainer_config()
H
hanchao 已提交
3583
    else:
3584 3585
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
Z
zhangjinchao01 已提交
3586

3587
    return update_g_config()
Z
zhangjinchao01 已提交
3588 3589


3590
def parse_config_and_serialize(trainer_config, config_arg_str):
Z
zhangjinchao01 已提交
3591
    try:
3592
        config = parse_config(trainer_config, config_arg_str)
Z
zhangjinchao01 已提交
3593 3594 3595 3596 3597 3598
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
3599

Z
zhangjinchao01 已提交
3600 3601 3602 3603 3604 3605 3606 3607
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise