ConvBaseProjection.h 3.7 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "Projection.h"
#include "paddle/math/MathUtils.h"

namespace paddle {

/**
 * @brief Base class for ConvProjection and ConvTransProjection.
 */
class ConvBaseProjection : public Projection {
public:
  /**
   * Constructor.
   */
  ConvBaseProjection(const ProjectionConfig& config,
                     ParameterPtr parameter,
                     bool useGpu);

  ~ConvBaseProjection();

protected:
  void getConvParams();
  void initCudnn();

  void reshapeTensorDesc(int batchSize);
  void reshape(int batchSize);

W
wangyang59 已提交
43 44
  virtual size_t calOutputSize() = 0;
  virtual size_t calInputSize() = 0;
W
wangyang59 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

  static void* getSpaceBytes(size_t size);

  /// True if it's deconv projection layer, false if it's ConvProjection layer
  bool isDeconv_;
  /// imageH_ and imageW_ / outputH_ and outputW_
  /// is calculated from the input layer.
  int imageH_, imageW_;
  int outputH_, outputW_;
  /// configImgH_ and configImgW_ / configOutH_ and configOutW_
  /// is obtained from config.
  int configImgH_, configImgW_;
  int configOutH_, configOutW_;
  /// channels_ and numFilters_ are defined in terms of convolution semantics
  int channels_, numFilters_;
  /// configChannels and configNumFilters_ are obtained from config
  /// For Conv they are the same as channels_ and numFilters
  /// For ConvTrans they are opposite to channels_ and numFilters
  int configChannels_, configNumFilters_;
  int paddingH_, paddingW_;
  int strideH_, strideW_;
  int filterH_, filterW_;
  /// One group offset of input data.
  int inputOffset_;
  /// One group offset of output data.
  int outputOffset_;
  /// One group offset of weight.
  int weightOffset_;
  int groups_;

  /// Cudnn tensor descriptor for input.
  hl_tensor_descriptor imageDesc_;
  /// Cudnn tensor descriptor for output.
  hl_tensor_descriptor outputDesc_;
  /// Cudnn tensor descriptor for filter.
  hl_filter_descriptor filterDesc_;
  /// Cudnn tensor descriptor for a convolution operation.
  hl_convolution_descriptor convDesc_;

  /// Record the algorithm for forward convolution, which is obtained by cudnn
  /// api to search the best suited algorithm.
  int fwdAlgo_;
  /// Record the algorithm for computing convolution gradient with respect to
  /// filter coefficients.
  int bwdFilterAlgo_;
  /// Record the algorithm for computing convolution gradient with respect to
  /// the output.
  int bwdDataAlgo_;
  /// Amount of GPU memory needed as workspace to be able to execute a
  /// forward convolution with the specified algo.
  size_t fwdLimitBytes_;
  /// Amount of GPU memory needed as workspace to be able to execute a
  /// backwardFilter with the specified algo.
  size_t bwdDataLimitBytes_;
  /// Amount of GPU memory needed as workspace to be able to execute a
  /// backwardData with the specified algo.
  size_t bwdFilterLimitBytes_;
  /// Size of total work space.
  size_t workSpaceInBytes_;

  /// Whether to call cuDNN api to choose conv algorithm.
  bool isSelectAlgo_;
  /// batchNum is used to record batch size. If the batch size is changed,
  /// the selection algorithm will be called.
  int batchNum_;
  bool bias_;

  std::unique_ptr<Weight> weight_;
  static ThreadLocalD<std::vector<MemoryHandle*>> convMem_;
};

}  // namespace paddle