mq2007.py 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MQ2007 dataset

MQ2007 is a query set from Million Query track of TREC 2007. There are about 1700 queries in it with labeled documents. In MQ2007, the 5-fold cross
validation strategy is adopted and the 5-fold partitions are included in the package. In each fold, there are three subsets for learning: training set,
validation set and testing set. 

MQ2007 dataset from 
http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar and parse training set and test set into paddle reader creators

"""


import os
import random
import functools
import rarfile
from common import download
import numpy as np


# URL = "http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar"
URL = "http://www.bigdatalab.ac.cn/benchmark/upload/download_source/7b6dbbe2-842c-11e4-a536-bcaec51b9163_MQ2007.rar"
MD5 = "7be1640ae95c6408dab0ae7207bdc706"


def __initialize_meta_info__():
  """
  download and extract the MQ2007 dataset
  """
  fn = fetch()
  rar = rarfile.RarFile(fn)
  dirpath = os.path.dirname(fn)
  rar.extractall(path=dirpath)
  return dirpath


class Query(object):
  """
  queries used for learning to rank algorithms. It is created from relevance scores,  query-document feature vectors

  Parameters:
  ----------
  query_id : int
    query_id in dataset, mapping from query to relevance documents
  relevance_score : int 
    relevance score of query and document pair
  feature_vector : array, dense feature
    feature in vector format
  description : string
    comment section in query doc pair data
  """
  def __init__(self, query_id=-1, relevance_score=-1,
               feature_vector=None, description=""):
    self.query_id = query_id
    self.relevance_score = relevance_score
    if feature_vector is None:
      self.feature_vector = []
    else:
      self.feature_vector = feature_vector
    self.description = description

  def __str__(self):
    string = "%s %s %s" %(str(self.relevance_score), str(self.query_id), " ".join(str(f) for f in self.feature_vector))
    return string

  # @classmethod
  def _parse_(self, text):
    """
    parse line into Query
    """
    comment_position = text.find('#')
    line = text[:comment_position].strip()
    self.description = text[comment_position+1:].strip()
    parts = line.split()
    assert(len(parts) == 48), "expect 48 space split parts, get %d" %(len(parts))
    # format : 0 qid:10 1:0.000272 2:0.000000 .... 
    self.relevance_score = int(parts[0])
    self.query_id = int(parts[1].split(':')[1])
    for p in parts[2:]: 
      pair = p.split(':')
      self.feature_vector.append(float(pair[1]))
    return self

class QueryList(object):
  """
  group query into list, every item in list is a Query
  """
  def __init__(self, querylist=None):
    self.query_id = -1
    if querylist is None:
      self.querylist = []
    else:
      self.querylist = querylist
      for query in self.querylist:
        if self.query_id == -1:
          self.query_id = query.query_id
        else:
          if self.query_id != query.query_id:
            raise ValueError("query in list must be same query_id")

  def __iter__(self):
    for query in self.querylist:
      yield query

  def _correct_ranking_(self):
    if self.querylist is None:
      return 
    self.querylist.sort(key=lambda x:x.relevance_score, reverse=True)

  def _add_query(self, query):
      if self.query_id == -1:
        self.query_id = query.query_id
      else:
        if self.query_id != query.query_id:
          raise ValueError("query in list must be same query_id")
      self.querylist.append(query)



def gen_pair(querylist, partial_order="full"):
  """
  gen pair for pair-wise learning to rank algorithm
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList
  pairtial_order : "full" or "neighbour"
  gen pairs for neighbour items or the full partial order pairs

  return :
  ------
  label : np.array, shape=(1)
  query_left : np.array, shape=(1, feature_dimension)
  query_right : same as left
  """
  if not isinstance(querylist, QueryList):
    querylist = QueryList(querylist)
  querylist._correct_ranking_()
  # C(n,2)
  if partial_order == "full":
    for i, query_left in enumerate(querylist):
      for j, query_right in enumerate(querylist):
        if query_left.relevance_score > query_right.relevance_score:
          yield np.ones(1), np.array(query_left.feature_vector), np.array(query_right.feature_vector)
        else:
          yield np.ones(1), np.array(query_left.feature_vector), np.array(query_right.feature_vector)

  elif partial_order == "neighbour":
    # C(n)
    k = 0 
    while k < len(querylist)-1:
      query_left = querylist[k]
      query_right = querylist[k+1]
      if query_left.relevance_score > query_right.relevance_score:
        yield np.ones(1), np.array(query_left.feature_vector), np.array(query_right.feature_vector)
      else:
        yield np.ones(1), np.array(query_left.feature_vector), np.array(query_right.feature_vector)
      k += 1
  else:
    raise ValueError("unsupport parameter of partial_order, Only can be neighbour or full")

  
def gen_list(querylist):
  """
  gen pair for pair-wise learning to rank algorithm
  Paramters:
  --------
  querylist : querylist, one query match many docment pairs in list, see QueryList

  return :
  ------
  label : np.array, shape=(samples_num, )
  querylist : np.array, shape=(samples_num, feature_dimension)
  """
  if not isinstance(querylist, QueryList):
    querylist = QueryList(querylist)
  querylist._correct_ranking_()
  relevance_score_list = [query.relevance_score for query in querylist]
  feature_vector_list = [query.feature_vector for query in querylist]
  yield np.array(relevance_score_list).T, np.array(feature_vector_list)


def load_from_text(filepath, shuffle=True, fill_missing=-1):
  """
  parse data file into querys
  """
  prev_query_id = -1;
  querylists = []
  querylist = None
  fn = __initialize_meta_info__()
  with open(os.path.join(fn, filepath)) as f:
    for line in f:
      query = Query()
      query = query._parse_(line)
      if query.query_id != prev_query_id:
        if querylist is not None:
          querylists.append(querylist)
        querylist = QueryList()
        prev_query_id = query.query_id
      querylist._add_query(query)
  if shuffle == True:
    random.shuffle(querylists)
  return querylists


def __reader__(filepath, format="pairwise", shuffle=True, fill_missing=-1):
  """
  Parameters
  --------
  filename : string
  shuffle : shuffle query-doc pair under the same query
  fill_missing : fill the missing value. default in MQ2007 is -1
  
  Returns
  ------
  yield
    label query_left, query_right  # format = "pairwise"
    label querylist # format = "listwise"
  """
  querylists = load_from_text(filepath, shuffle=shuffle, fill_missing=fill_missing)
  for querylist in querylists:
    if format == "pairwise":
      for pair in gen_pair(querylist):
        yield pair
    elif format == "listwise":
      yield next(gen_list(querylist))

train = functools.partial(__reader__,filepath="MQ2007/MQ2007/Fold1/train.txt")
test = functools.partial(__reader__, filepath="MQ2007/MQ2007/Fold1/test.txt")
# def __parse_line__(line_stream):
#   """
#   return : score, qid, 46-dim feature vector
#   parse line of file 
#   """
#   score = -1, qid = -1, features = []
#   line = line_stream[:line_stream.find('#')].strip()
#   parts = line.split()
#   assert(len(parts) == 48), "expect 48 space split parts, get ", len(parts)
#   # format : 0 qid:10 1:0.000272 2:0.000000 .... 
#   score = int(parts[0])
#   qid = int(parts[1].split(':')[1])
#   for p in parts[2:]: 
#     pair = p.split(':')
#     features.append(float(part[1]))
#   return score, qid, features


# def __reader__(filename, rand_seed=0, is_test=False, test_rate=0.0):
#   """
#   create a line reader Generator

#   Parameters
#   --------
#   filename : string
#   rand_seed : sample instance from dataset, set the sample random seed
#   is_test : sample test set or generate train set
#   test_rate : sample test set rate

#   Returns
#   ------
#   yield
#     int int lists
#     score query_id, features
#   """
#   rand = random.Random(x=rand_seed)
#   with open(file_name, 'r') as f:
#     for line in f:
#       if (rand.random() < test_rate) == is_test:
#         yield __parse_line__(line)


# def __pair_reader__(filename, shuffle=True):
  

def fetch():
  return download(URL, "MQ2007", MD5)

if __name__ == "__main__":
  fetch()