operation.cc 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/ir/fusion_group/operation.h"
16
#include "paddle/fluid/framework/operator.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

namespace paddle {
namespace framework {
namespace ir {
namespace fusion_group {

OperationMap* OperationMap::map = nullptr;

OperationMap::OperationMap() {
  InsertUnaryElementwiseOperations();
  InsertBinaryElementwiseOperations();
}

std::unordered_set<std::string> OperationMap::Find(int type, int num_operands) {
  std::unordered_set<std::string> res;
  for (auto& t : operations_) {
    if ((t.second.type == type) &&
        (num_operands < 0 || t.second.num_operands == num_operands)) {
      res.insert(t.first);
    }
  }
  return res;
}

void OperationMap::Insert(int type, int num_operands, std::string op_type,
42 43 44 45
                          std::string expr, std::vector<std::string> grad_exprs,
                          std::vector<std::string> input_names,
                          std::vector<std::string> output_names) {
  Operation op(type, num_operands, op_type, {expr}, input_names, output_names);
46 47 48 49 50
  PADDLE_ENFORCE_EQ(op.IsValid(), true,
                    platform::errors::InvalidArgument(
                        "Operation %s is invalid. Please set correct "
                        "expression for forward calculation.",
                        op_type));
51 52 53 54
  operations_[op_type] = op;

  if (grad_exprs.size() > 0U) {
    std::string grad_op_type = op_type + "_grad";
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    // grad_inputs = inputs + outputs + grad of outputs
    std::vector<std::string> grad_input_names = input_names;
    for (auto name : output_names) {
      grad_input_names.push_back(name);
    }
    for (auto name : output_names) {
      grad_input_names.push_back(GradVarName(name));
    }
    // grad_output = grad of inputs
    std::vector<std::string> grad_output_names;
    for (auto name : input_names) {
      grad_output_names.push_back(GradVarName(name));
    }
    Operation grad_op(type, num_operands, grad_op_type, grad_exprs,
                      grad_input_names, grad_output_names);
70 71 72 73 74
    PADDLE_ENFORCE_EQ(grad_op.IsValid(), true,
                      platform::errors::InvalidArgument(
                          "Operation %s is invalid. Please set correct "
                          "expression for backward calculation.",
                          grad_op_type));
75 76 77 78 79 80 81 82 83
    operations_[grad_op_type] = grad_op;
  }
}

void OperationMap::InsertUnaryElementwiseOperations() {
  // For unary elementwise operations:
  //  ${0} - x
  //  ${1} - out
  //  ${2} - dout
84 85 86 87 88 89
  auto insert_handler = [&](std::string op_type, std::string expr,
                            std::vector<std::string> grad_exprs) {
    int type = 0;
    int num_oprands = 1;
    Insert(type, num_oprands, op_type, expr, grad_exprs, {"X"}, {"Out"});
  };
90 91 92

  // relu:
  //  out = f(x) = x > 0 ? x : 0
93 94
  //  dx = dout * (out > 0 ? 1 : 0)
  insert_handler("relu", "real_max(${0}, 0)", {"${1} > 0 ? ${2} : 0"});
95 96 97
  // sigmoid:
  //  out = f(x) = 1.0 / (1.0 + exp(-x))
  //  dx = dout * out * (1 - out)
98 99
  insert_handler("sigmoid", "1.0 / (1.0 + real_exp(- ${0}))",
                 {"${2} * ${1} * (1.0 - ${1})"});
100 101 102
  // tanh:
  //  out = f(x) = 2.0 / (1.0 + exp(-2.0 * x)) - 1.0;
  //  dx = dout * (1 - out * out)
103 104
  insert_handler("tanh", "2.0 / (1.0 + real_exp(-2.0 * ${0})) - 1.0",
                 {"${2} * (1.0 - ${1} * ${1})"});
105 106 107 108 109 110 111 112
}

void OperationMap::InsertBinaryElementwiseOperations() {
  // For binary elementwise oprations:
  //  ${0} - x
  //  ${1} - y
  //  ${2} - out
  //  ${3} - dout
113 114 115 116 117 118
  auto insert_handler = [&](std::string op_type, std::string expr,
                            std::vector<std::string> grad_exprs) {
    int type = 0;
    int num_oprands = 2;
    Insert(type, num_oprands, op_type, expr, grad_exprs, {"X", "Y"}, {"Out"});
  };
119 120 121 122 123

  // elementwise_add:
  //  out = x + y
  //  dx = dout * 1
  //  dy = dout * 1
124
  insert_handler("elementwise_add", "${0} + ${1}", {"${3}", "${3}"});
125 126 127 128
  // elementwise_sub:
  //  out = x - y
  //  dx = dout * 1
  //  dy = dout * (-1)
129
  insert_handler("elementwise_sub", "${0} - ${1}", {"${3}", "- ${3}"});
130 131 132 133
  // elementwise_mul:
  //  out = x * y
  //  dx = dout * y
  //  dy = dout * x
134 135 136 137 138
  insert_handler("elementwise_mul", "${0} * ${1}",
                 {"${3} * ${1}", "${3} * ${0}"});
  insert_handler("elementwise_div", "${0} / ${1}", {});
  insert_handler("elementwise_min", "real_min(${0}, ${1})", {});
  insert_handler("elementwise_max", "real_max(${0}, ${1})", {});
139 140 141 142 143 144
}

}  // namespace fusion_group
}  // namespace ir
}  // namespace framework
}  // namespace paddle