Tester.cpp 12.6 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "Tester.h"

#include <fenv.h>
#include <stdio.h>

#include <iostream>
#include <iomanip>
#include <sstream>
#include <limits>

#include <google/protobuf/text_format.h>

#include "paddle/utils/PythonUtil.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Util.h"
#include "paddle/utils/GlobalConstants.h"

#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/gserver/layers/ValidationLayer.h"
#include "paddle/gserver/gradientmachines/GradientMachineMode.h"
#include "TesterConfig.h"

namespace paddle {

Tester::Tester(const std::shared_ptr<TrainerConfigHelper> &config,
               std::unique_ptr<TesterConfig> &&intconfig,
               const GradientMachinePtr &gradientMachine,
               const std::shared_ptr<ParameterUpdater> &parameterUpdater,
               std::shared_ptr<DataProvider> testDataProvider):
               config_(config),
               intconfig_(std::move(intconfig)),
               gradientMachine_(gradientMachine),
               parameterUpdater_(parameterUpdater),
               testDataProvider_(testDataProvider) {
  testEvaluator_.reset(gradientMachine_ ->makeEvaluator());
  if (intconfig_->distributeTest) {
    testParameterClient_.reset(new ParameterClient2(true));
  }

  if (testParameterClient_) {
    testParameterClient_->init(
        gradientMachine_->getParameters());
  }

  std::unique_ptr<ParameterUtilConfig> paramConfig(
      new ParameterUtilConfig(
          intconfig_->saveOnlyOne,
          intconfig_->savingPeriod,
          intconfig_->loadsaveParametersInPserver,
          intconfig_->config));

  paramUtil_.reset(new ParameterUtil(
      config_,
      std::move(paramConfig),
      gradientMachine_,
      parameterUpdater_));
}

E
emailweixu 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
void Tester::startTestPeriod() {
  testEvaluator_->start();
  testContext_.cost = 0;
  testContext_.numSamples = 0;

  parameterUpdater_->apply();
  if (intconfig_->prevBatchState) {
    gradientMachine_->getState(*intconfig_->trainState);
    gradientMachine_->setState(*intconfig_->testState);
  }
}

void Tester::testOneDataBatch(
    const DataBatch& dataBatch, std::vector<Argument>* outArgs) {
  testContext_.cost += forwardOneBatch(
    dataBatch, testEvaluator_.get(), outArgs);
  testContext_.numSamples += dataBatch.getSize();
}

Z
zhangjinchao01 已提交
93 94 95 96 97 98 99 100
void Tester::testOnePeriod() {
  DataBatch dataBatch;
  int64_t batchSize = config_->getOptConfig().batch_size();
  bool testAllData =
      intconfig_->testPeriod == 0 || intconfig_->testAllDataInOnePeriod;
  int batches =
      testAllData ? std::numeric_limits<int>::max() : intconfig_->testPeriod;

E
emailweixu 已提交
101
  std::vector<Argument> outArgs;
Z
zhangjinchao01 已提交
102

E
emailweixu 已提交
103
  startTestPeriod();
Z
zhangjinchao01 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116
  for (int i = 0; i < batches; ++i) {
    int num = testDataProvider_->getNextBatch(batchSize, &dataBatch);
    if (num == 0) {
      testDataProvider_->reset();
      if (intconfig_->prevBatchState) {
        gradientMachine_->resetState();
      }
      if (testAllData) {
        break;
      } else {
        num = testDataProvider_->getNextBatch(batchSize, &dataBatch);
      }
    }
E
emailweixu 已提交
117
    testOneDataBatch(dataBatch, &outArgs);
Z
zhangjinchao01 已提交
118
  }
Y
Yu Yang 已提交
119
  finishTestPeriod();
E
emailweixu 已提交
120 121 122
}

void Tester::finishTestPeriod() {
Z
zhangjinchao01 已提交
123
  testEvaluator_->finish();
E
emailweixu 已提交
124 125 126 127 128
  CHECK_GT(testContext_.numSamples, 0)
      << "There is no samples in your test batch. Possibly "
         "wrong implementation of DataProvidor.reset()";
  LOG(INFO) << " Test samples=" << testContext_.numSamples
            << " cost=" << testContext_.cost / testContext_.numSamples
Z
zhangjinchao01 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
            << " Eval: " << *testEvaluator_;
  parameterUpdater_->restore();
  if (intconfig_->prevBatchState) {
    gradientMachine_->getState(*intconfig_->testState);
    gradientMachine_->setState(*intconfig_->trainState);
  }
}

int64_t Tester::testOneBatchById(int64_t batchId) {
  DataBatch dataBatch;
  int32_t batchSize = config_->getOptConfig().batch_size();

  testDataProvider_->getNextBatch(batchSize, &dataBatch);

  int64_t actualBatchSize = dataBatch.getSize();
  if (actualBatchSize == 0) {
    return 0;
  }

E
emailweixu 已提交
148 149
  std::vector<Argument> outArgs;

Z
zhangjinchao01 已提交
150 151
  stats_ += std::pair<int64_t, real>{
      actualBatchSize,
E
emailweixu 已提交
152
      forwardOneBatch(dataBatch, testEvaluator_.get(), &outArgs)};
Z
zhangjinchao01 已提交
153 154 155 156 157 158 159 160

  if (((batchId + 1) % intconfig_->logPeriod) == 0) {
    LOG(INFO) << " Batch=" << batchId + 1 << " " << stats_.getStats(false);
  }

  return actualBatchSize;
}

E
emailweixu 已提交
161 162 163 164
real Tester::forwardOneBatch(const DataBatch &dataBatch,
                             Evaluator *evaluator,
                             std::vector<Argument>* pOutArgs) {
  auto& outArgs = *pOutArgs;
Z
zhangjinchao01 已提交
165 166 167 168 169 170 171 172 173 174 175 176
  const std::vector<Argument>& inArgs = dataBatch.getStreams();
  if (intconfig_->loadsaveParametersInPserver) {
    REGISTER_TIMER("prefetch");
    gradientMachine_->prefetch(inArgs);
    parameterUpdater_->getParametersRemote(false /*full parameter*/,
                                           true /*after apply*/);
  }

  gradientMachine_->forward(inArgs, &outArgs, PASS_TEST);

  // write features if set this flag and outArgs is not empty
  std::string featFile = intconfig_->featFile;
E
emailweixu 已提交
177
  if (!featFile.empty() && outArgs.empty()) {
Z
zhangjinchao01 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    size_t numOutputs = outArgs.size();
    std::vector<MatrixPtr> featMatrices;
    featMatrices.resize(numOutputs);
    for (size_t i = 0; i < numOutputs; ++i) {
      featMatrices[i] = Matrix::create(outArgs[i].value->getHeight(),
                                       outArgs[i].value->getWidth(), false,
                                       false);  // CPU data buffer
      featMatrices[i]->copyFrom(*(outArgs[i].value), HPPL_STREAM_DEFAULT);
    }
    hl_stream_synchronize(HPPL_STREAM_DEFAULT);
    FILE* fp = fopen(featFile.c_str(), "ab+");
    PCHECK(!ferror(fp)) << "Fail to open " << featFile;

    size_t sampleNum = featMatrices[0]->getHeight();
    for (size_t i = 0; i < sampleNum; ++i) {
      for (size_t j = 0; j < numOutputs; ++j) {
        size_t dim = featMatrices[j]->getWidth();
        fwrite(featMatrices[j]->getData() + i * dim, sizeof(real), dim, fp);
      }
    }
    fclose(fp);
  }
  if (evaluator) {
    gradientMachine_->eval(evaluator);
  }

  // Save the output layers if predict_output_dir is not empty
  std::string predictOutputDir = intconfig_->predictOutputDir;
  if (!predictOutputDir.empty() && !outArgs.empty()) {
    CHECK(intconfig_->testing) << "Only valid in test mode";
    if (!os_.is_open()) {
      // TODO(yuyang18): Refactor these lines.
      constexpr int kBufLen = 100;
      char buf[kBufLen];
      snprintf(buf, kBufLen, "rank-%05d", intconfig_->trainerId);
      mkDir(predictOutputDir.c_str());
      std::string filename = path::join(predictOutputDir, buf);
      os_.open(filename, std::ofstream::trunc);
      CHECK(os_.is_open()) << "Failed to open file " << filename;
    }
    printOutput(outArgs, os_);
    return 0.0;  // In this case, there is no meaning to calculate cost
  }

  return Argument::sumCosts(outArgs);
}


void Tester::testOnePassBatch(int passId) {
  stats_.reset();
  const std::vector<Argument> inArgs;
  gradientMachine_->forward(inArgs, nullptr, PASS_TEST);
  int64_t num; real cost;
  gradientMachine_->getStats(cost, num);
  stats_ += std::pair<int64_t, real> {num, cost};
  gradientMachine_->onPassEnd();

  LOG(INFO) << " Pass=" << passId << " " << stats_.getStats(false);
}


void Tester::testOnePass(int passId) {
  stats_.reset();
  int64_t batchId = 0;
  int num = 0;
  if (intconfig_->prevBatchState) {
    gradientMachine_->resetState();
  }

  testEvaluator_->start();

  do {
    num = testOneBatchById(batchId);
    ++batchId;
  } while (num > 0);

  gradientMachine_->onPassEnd();
  testEvaluator_->finish();

  LOG(INFO) << " Pass=" << passId << " " << stats_.getStats(false)
            << " Eval: " << *testEvaluator_;

  if (intconfig_->distributeTest) {
    testEvaluator_->distributeEval(testParameterClient_.get());
    if (0 == intconfig_->trainerId) {
      LOG(INFO) << "distribute eval: " << *testEvaluator_;
    }
  }
}


void Tester::test() {
  CHECK(testDataProvider_) << "TestData is not specified";
  testDataProvider_->setSkipShuffle();
  testDataProvider_->reset();
  gradientMachine_->start(*config_, testDataProvider_);

  // For evaluation
  std::vector<std::string> modelList;
  std::string modelListFromConfig = intconfig_->modelList;
  std::string initModelPath = intconfig_->initModelPath;
  if (!modelListFromConfig.empty()) {
    loadFileList(modelListFromConfig, modelList);
    intconfig_->testPass = 0;
    intconfig_->numPasses = modelList.size();
    intconfig_->savingPeriod = 1;
    CHECK_EQ(intconfig_->testWait, 0) <<
      "--test_wait must be 0 for evaluation";
  } else if (!initModelPath.empty()) {
    modelList.push_back(initModelPath);
    intconfig_->testPass = 0;
    intconfig_->numPasses = 1;
    intconfig_->savingPeriod = 1;
    CHECK_EQ(intconfig_->testWait, 0) <<
      "--test_wait must be 0 for evaluation";
  }

  for (int i = intconfig_->testPass; i < intconfig_->numPasses; ++i) {
    int passId = i;
    if (passId % intconfig_->savingPeriod == 0) {
      if (intconfig_->testWait) {
        while (paramUtil_->loadParameters(passId,
                true /*local*/, true /*remote*/) == false) {
          LOG(INFO) << "Waiting for parameters of pass " << passId;
          sleep(60);  // sleep 60s
        }
      } else {
        if (modelList.size() == 0) {
          CHECK_EQ(paramUtil_->loadParameters(passId,
                  true /*local*/, true /*remote*/), true);
        } else {
          paramUtil_->loadParametersWithPath(modelList[i],
                                      true /*local*/, true /*remote*/);
        }
      }
      if (IGradientMachineMode::trainWholeDataInOneBatch(intconfig_->mode)) {
        testOnePassBatch(passId);
      } else {
        testOnePass(passId);
      }
      if (passId + intconfig_->savingPeriod < intconfig_->numPasses) {
        // if there is at least 1 more pass to test, then call reset,
        // otherwise not.
        testDataProvider_->reset();
      }
    }
  }

  gradientMachine_->finish();
}


void Tester::printOutput(const std::vector<Argument>& outArgs,
                          std::ostream& os) {
  size_t numOutputs = outArgs.size();
  size_t numIns = outArgs[0].getBatchSize();
  if (cpuMat_.size() != numOutputs || cpuVec_.size() != numOutputs) {
    cpuMat_.resize(numOutputs, nullptr);
    cpuVec_.resize(numOutputs, nullptr);
  }

  for (size_t i = 0; i < numOutputs; ++i) {
    if (outArgs[i].value != nullptr) {
      if (outArgs[i].value->useGpu()) {
        if (dynamic_cast<GpuMatrix*>(outArgs[i].value.get())) {
          size_t dim = outArgs[i].value->getWidth();
          Matrix::resizeOrCreate(cpuMat_[i], numIns, dim, false, false);
          cpuMat_[i]->copyFrom(*outArgs[i].value);
        } else if (dynamic_cast<GpuSparseMatrix*>(outArgs[i].value.get())) {
          auto sparseMat =
              dynamic_cast<GpuSparseMatrix*>(outArgs[i].value.get());
          cpuMat_[i] = Matrix::createSparseMatrix(
              sparseMat->getHeight(), sparseMat->getWidth(),
              sparseMat->getElementCnt(), sparseMat->getValueType(),
              sparseMat->format_, false, /* trans */
              false);                    /* useGpu */
          hl_stream_t stream = HPPL_STREAM_DEFAULT;
          cpuMat_[i]->copyFrom(*sparseMat, stream);
        } else {
          LOG(WARNING) << "Not supported gpu matrix type";
        }
      }
    } else if (outArgs[i].ids != nullptr) {
      if (outArgs[i].ids->useGpu()) {
        IVector::resizeOrCreate(cpuVec_[i], outArgs[i].ids->getSize(), false);
        cpuVec_[i]->copyFrom(*outArgs[i].ids);
      }
    } else if (outArgs[i].strs != nullptr) {
      continue;
    } else {
      LOG(WARNING) << "outArgs[" << i << "] has no data to print";
    }
  }

  for (size_t i = 0; i < numIns; ++i) {
    for (size_t j = 0; j < numOutputs; ++j) {
      if (outArgs[j].value != nullptr) {
        if (outArgs[j].value->useGpu()) {
          cpuMat_[j]->printOneRow(os, i);
        } else {
          outArgs[j].value->printOneRow(os, i);
        }
      } else if (outArgs[j].ids != nullptr) {
        if (outArgs[j].ids->useGpu()) {
          cpuVec_[j]->printOneElement(os, i);
        } else {
          outArgs[j].ids->printOneElement(os, i);
        }
      } else if (outArgs[j].strs != nullptr) {
        os << (*outArgs[j].strs)[i] << ";";
      }
    }
    os << std::endl;
  }
}
}  // namespace paddle