custom_concat_op.cc 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>
#include <vector>
#include "concat_and_split.h"  // NOLINT
#include "paddle/extension.h"

#define CHECK_INPUT(x) \
  PD_CHECK(x.place() == paddle::PlaceType::kCPU, #x " must be a CPU Tensor.")

int64_t ComputeAxis(int64_t axis, int64_t rank) {
  PD_CHECK(axis >= -rank && axis < rank,
           "The axis is excepted to be in range of [",
           -rank,
           ", ",
           rank,
           "].");
  if (axis < 0) {
    axis = axis + rank;
  }
  return axis > 0 ? axis : 0;
}

std::vector<int64_t> ComputeOutShape(
    std::vector<std::vector<int64_t>> in_shapes, int64_t axis) {
  size_t n = in_shapes.size();
  auto out_shape = in_shapes[0];
  size_t zero_dim_size = out_shape.size();
  for (size_t i = 1; i < n; ++i) {
    PD_CHECK(in_shapes[i].size() == out_shape.size(),
             "Input dimension must be same.");
    for (size_t j = 0; j < zero_dim_size; ++j) {
      if (j == axis) {
        out_shape[axis] += in_shapes[i][j];
      } else {
        PD_CHECK(in_shapes[0][j] == in_shapes[i][j],
                 "The ",
                 j,
                 "-th dimension of input must be same.");
      }
    }
  }
  return out_shape;
}

std::vector<paddle::Tensor> ConcatForwardDynamicAxis(
    const std::vector<paddle::Tensor>& inputs, const paddle::Tensor& axis_t) {
  // check inputs
  PD_CHECK(inputs.size() >= 1, "No Tensor need to be concat.");
  for (auto& t : inputs) {
    CHECK_INPUT(t);
  }
  CHECK_INPUT(axis_t);

  // compute output shape
  int64_t rank = static_cast<int64_t>(inputs[0].shape().size());
  int64_t axis = axis_t.data<int64_t>()[0];
  axis = ComputeAxis(axis, rank);
  std::vector<std::vector<int64_t>> in_shapes;
  for (auto& t : inputs) {
    in_shapes.emplace_back(t.shape());
  }
  auto out_shape = ComputeOutShape(in_shapes, axis);

  // create output
  auto out = paddle::Tensor(paddle::PlaceType::kCPU);
  out.reshape(out_shape);

  // calc
  PD_DISPATCH_FLOATING_AND_INTEGRAL_TYPES(
      inputs[0].type(), "ConcatCpuKernel", ([&] {
        ConcatCpuKernel<data_t>(inputs, &out, axis);
      }));

  return {out};
}

std::vector<paddle::Tensor> ConcatBackwardDynamicAxis(
    const std::vector<paddle::Tensor>& inputs,
    const paddle::Tensor& grad_out,
    const paddle::Tensor& axis_t) {
  // check input
  PD_CHECK(inputs.size() >= 1, "No Tensor need to be concat.");
  for (auto& t : inputs) {
    CHECK_INPUT(t);
  }
  CHECK_INPUT(axis_t);
  CHECK_INPUT(grad_out);

  // compate axis
  int64_t rank = static_cast<int64_t>(inputs[0].shape().size());
  int64_t axis = axis_t.data<int64_t>()[0];
  axis = ComputeAxis(axis, rank);

  // create outputs
  std::vector<paddle::Tensor> grad_inputs;
  for (auto& t : inputs) {
    auto grad = paddle::Tensor(paddle::PlaceType::kCPU);
    grad.reshape(t.shape());
    grad_inputs.emplace_back(grad);
  }

  // calc
  PD_DISPATCH_FLOATING_AND_INTEGRAL_TYPES(
      grad_out.type(), "SplitCpuKernel", ([&] {
        SplitCpuKernel<data_t>(grad_out, inputs, &grad_inputs, axis);
      }));

  return grad_inputs;
}

std::vector<std::vector<int64_t>> ConcatInferShapeDynamicAxis(
    std::vector<std::vector<int64_t>> input_shapes,
    std::vector<int64_t> axis_shape) {
  return {std::vector<int64_t>(input_shapes[0].size(), -1)};
}

std::vector<paddle::DataType> ConcatInferDtypeDynamicAxis(
    std::vector<paddle::DataType> input_dtypes, paddle::DataType axis_dtype) {
  return {input_dtypes[0]};
}

PD_BUILD_OP(custom_concat)
    .Inputs({paddle::Vec("X"), "Axis"})
    .Outputs({"Out"})
    .SetKernelFn(PD_KERNEL(ConcatForwardDynamicAxis))
    .SetInferShapeFn(PD_INFER_SHAPE(ConcatInferShapeDynamicAxis))
    .SetInferDtypeFn(PD_INFER_DTYPE(ConcatInferDtypeDynamicAxis));

PD_BUILD_GRAD_OP(custom_concat)
    .Inputs({paddle::Vec("X"), paddle::Grad("Out"), "Axis"})
    .Outputs({paddle::Grad(paddle::Vec("X"))})
    .SetKernelFn(PD_KERNEL(ConcatBackwardDynamicAxis));