matmul_op.h 8.4 KB
Newer Older
L
Luo Tao 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
M
Markus Kliegl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
M
Markus Kliegl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
M
Markus Kliegl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
M
Markus Kliegl 已提交
14 15 16 17

#pragma once

#include "paddle/framework/op_registry.h"
18
#include "paddle/operators/math/math_function.h"
M
Markus Kliegl 已提交
19 20 21 22 23 24 25 26 27 28 29
#include "paddle/operators/math/matmul.h"

namespace paddle {
namespace operators {
namespace matmul_detail {

using Tensor = framework::Tensor;
using DDim = framework::DDim;
using framework::make_ddim;
using framework::vectorize;

Q
QI JUN 已提交
30
template <typename DeviceContext, typename T>
M
Markus Kliegl 已提交
31 32 33 34 35 36 37 38 39 40
class MatMulKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor& x = *context.Input<Tensor>("X");
    const Tensor& y = *context.Input<Tensor>("Y");
    Tensor* out = context.Output<Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

Q
QI JUN 已提交
41 42 43
    math::MatMulFunctor<DeviceContext, T>()(
        context.template device_context<DeviceContext>(), x, transpose_x, y,
        transpose_y, T(1), out, T(0));
M
Markus Kliegl 已提交
44 45 46 47 48 49
  }
};

template <typename T>
inline Tensor Reshape(const Tensor& input, const DDim& dims) {
  Tensor output;
50
  output.ShareDataWith(input);
M
Markus Kliegl 已提交
51 52 53 54 55 56 57 58 59
  output.Resize(dims);
  return output;
}

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
template <typename T>
Tensor CombineBatchAndM(const Tensor& input) {
  Tensor output;
60
  output.ShareDataWith(input);
M
Markus Kliegl 已提交
61 62 63 64 65 66 67 68 69 70 71
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    std::vector<int64_t> out_dims = {in_dims[0] * in_dims[1], in_dims[2]};
    output.Resize(make_ddim(out_dims));
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
Q
QI JUN 已提交
72 73
template <typename DeviceContext, typename T>
Tensor CombineBatchAndN(const DeviceContext& context, const Tensor& input) {
M
Markus Kliegl 已提交
74 75 76
  Tensor output;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
77
    output.Resize({in_dims[1], in_dims[0], in_dims[2]});
M
Markus Kliegl 已提交
78
    output.mutable_data<T>(context.GetPlace());
79
    std::vector<int> axis = {1, 0, 2};
Q
QI JUN 已提交
80 81
    math::Transpose<DeviceContext, T, 3> trans;
    trans(context, input, &output, axis);
M
Markus Kliegl 已提交
82
    std::vector<int64_t> out_dims = {in_dims[1], in_dims[0] * in_dims[2]};
83
    output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
84
  } else {
85
    output.ShareDataWith(input);
M
Markus Kliegl 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  }
  return output;
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
Q
QI JUN 已提交
115
template <typename DeviceContext, typename T>
M
Markus Kliegl 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor& x = *context.Input<Tensor>("X");
    const Tensor& y = *context.Input<Tensor>("Y");
    const Tensor& dout = *context.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* dx = context.Output<Tensor>(framework::GradVarName("X"));
    Tensor* dy = context.Output<Tensor>(framework::GradVarName("Y"));
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    std::vector<int64_t> x_dims = vectorize(x.dims());
    std::vector<int64_t> y_dims = vectorize(y.dims());

    // If X is a vector, reshape it to a matrix.
    if (x_dims.size() == 1) {
      x_dims.insert(x_dims.begin(), 1);
    }

    // If Y is a vector, reshape it to a matrix.
    if (y_dims.size() == 1) {
      y_dims.push_back(1);
    }

C
chengduoZH 已提交
140
    int batch_count = 0;
C
chengduoZH 已提交
141
    // The previous Rank-2 dimensions are accumulated on the batch_count.
C
chengduoZH 已提交
142 143 144 145
    if (x_dims.size() > 3) {
      batch_count = accumulate(x_dims.begin(), x_dims.end() - 2, 1,
                               std::multiplies<int>());
    }
M
Markus Kliegl 已提交
146 147 148 149 150 151 152 153 154 155 156 157
    // Fix the dOut dimensions.
    int M = 0, N = 0, batchCountX = 0, batchCountY = 0;

    switch (x_dims.size()) {
      case 2:
        M = transpose_x ? x_dims[1] : x_dims[0];
        break;
      case 3:
        batchCountX = x_dims[0];
        M = transpose_x ? x_dims[2] : x_dims[1];
        break;
      default:
C
chengduoZH 已提交
158
        batchCountX = batch_count;
C
chengduoZH 已提交
159 160
        size_t mat_s = x_dims.size() - 2;
        M = transpose_x ? x_dims[mat_s + 1] : x_dims[mat_s];
M
Markus Kliegl 已提交
161 162 163 164 165 166 167 168 169 170 171
    }

    switch (y_dims.size()) {
      case 2:
        N = transpose_y ? y_dims[0] : y_dims[1];
        break;
      case 3:
        batchCountY = y_dims[0];
        N = transpose_y ? y_dims[1] : y_dims[2];
        break;
      default:
C
chengduoZH 已提交
172
        batchCountY = batch_count;
C
chengduoZH 已提交
173 174
        size_t mat_s = y_dims.size() - 2;
        N = transpose_y ? y_dims[mat_s] : y_dims[mat_s + 1];
M
Markus Kliegl 已提交
175 176 177 178 179 180 181 182 183 184
    }
    if (batchCountX && batchCountY) {
      PADDLE_ENFORCE_EQ(
          batchCountX, batchCountY,
          "When Input(X) and Input(Y) are both three dimensional, they "
          "must have the same batch dimension.");
    }
    int batchCount = std::max(batchCountX, batchCountY);
    std::vector<int64_t> dout_dims = {M, N};
    if (batchCount) {
C
chengduoZH 已提交
185 186 187 188 189
      if (x_dims.size() > 3) {
        dout_dims.insert(dout_dims.begin(), x_dims.begin(), x_dims.end() - 2);
      } else {
        dout_dims.insert(dout_dims.begin(), batchCount);
      }
M
Markus Kliegl 已提交
190 191 192 193 194
    }
    Tensor X = Reshape<T>(x, make_ddim(x_dims));
    Tensor Y = Reshape<T>(y, make_ddim(y_dims));
    Tensor dOut = Reshape<T>(dout, make_ddim(dout_dims));

Q
QI JUN 已提交
195
    auto& dev_ctx = context.template device_context<DeviceContext>();
M
Markus Kliegl 已提交
196 197 198 199
    if (dx) {
      dx->mutable_data<T>(context.GetPlace());
      const Tensor& dOut_for_dX =
          (x_dims.size() == 2 && y_dims.size() == 3)
Q
QI JUN 已提交
200
              ? CombineBatchAndN<DeviceContext, T>(dev_ctx, dOut)
M
Markus Kliegl 已提交
201 202 203
              : dOut;
      if (x_dims.size() == 2 && y_dims.size() == 3) {
        Y = transpose_y ? CombineBatchAndM<T>(Y)
Q
QI JUN 已提交
204
                        : CombineBatchAndN<DeviceContext, T>(dev_ctx, Y);
M
Markus Kliegl 已提交
205 206
      }
      if (transpose_x) {
Q
QI JUN 已提交
207 208
        math::MatMulFunctor<DeviceContext, T>()(
            dev_ctx, Y, transpose_y, dOut_for_dX, transpose_x, T(1), dx, T(0));
M
Markus Kliegl 已提交
209
      } else {
Q
QI JUN 已提交
210 211
        math::MatMulFunctor<DeviceContext, T>()(
            dev_ctx, dOut_for_dX, transpose_x, Y, !transpose_y, T(1), dx, T(0));
M
Markus Kliegl 已提交
212 213 214 215 216 217 218 219 220
      }
    }

    if (dy) {
      dy->mutable_data<T>(context.GetPlace());
      const Tensor& dOut_for_dY = (y_dims.size() == 2 && x_dims.size() == 3)
                                      ? CombineBatchAndM<T>(dOut)
                                      : dOut;
      if (y_dims.size() == 2 && x_dims.size() == 3) {
Q
QI JUN 已提交
221
        X = transpose_x ? CombineBatchAndN<DeviceContext, T>(dev_ctx, X)
M
Markus Kliegl 已提交
222 223 224 225
                        : CombineBatchAndM<T>(X);
        dOut = CombineBatchAndM<T>(dOut);
      }
      if (transpose_y) {
Q
QI JUN 已提交
226 227
        math::MatMulFunctor<DeviceContext, T>()(
            dev_ctx, dOut_for_dY, transpose_y, X, transpose_x, T(1), dy, T(0));
M
Markus Kliegl 已提交
228
      } else {
Q
QI JUN 已提交
229 230
        math::MatMulFunctor<DeviceContext, T>()(
            dev_ctx, X, !transpose_x, dOut_for_dY, transpose_y, T(1), dy, T(0));
M
Markus Kliegl 已提交
231 232 233 234 235 236 237 238 239 240 241
      }
    }
  }
};
}  // namespace matmul_detail

using matmul_detail::MatMulKernel;
using matmul_detail::MatMulGradKernel;

}  // namespace operators
}  // namespace paddle