layer.h 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17
#include <map>
18 19
#include <string>
#include <vector>
X
Xin Pan 已提交
20 21 22
#include "pybind11/pybind11.h"

#include "Python.h"
23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace imperative {

X
Xin Pan 已提交
31 32
namespace py = ::pybind11;

X
Xin Pan 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
59
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
Xin Pan 已提交
85

86 87 88 89
class OpBase;

class VarBase {
 public:
X
polish  
Xin Pan 已提交
90 91 92 93
  VarBase() : VarBase(new framework::Variable(), new framework::Variable()) {}

  // Owns `var` and `grad`
  VarBase(framework::Variable* var, framework::Variable* grad)
M
minqiyang 已提交
94 95 96
      : pre_op_(nullptr),
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
polish  
Xin Pan 已提交
97 98
        var_(var),
        grads_(grad),
M
minqiyang 已提交
99 100 101
        stop_gradient_(false) {}

  explicit VarBase(bool stop_gradient)
102 103 104
      : pre_op_(nullptr),
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
Xin Pan 已提交
105
        var_(new framework::Variable()),
106
        grads_(new framework::Variable()),
107
        stop_gradient_(stop_gradient) {}
108

M
minqiyang 已提交
109
  virtual ~VarBase() {}
110

X
Xin Pan 已提交
111
  void RunBackward();
112 113 114

  framework::LoDTensor& Grad();

M
minqiyang 已提交
115 116 117 118 119 120 121
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

122
  OpBase* pre_op_;
X
Xin Pan 已提交
123
  std::string pre_op_out_name_;
124 125 126 127 128
  int pre_op_out_idx_;

  framework::VarDesc* var_desc_;
  framework::Variable* var_;
  framework::Variable* grads_;
129 130

  bool stop_gradient_;
131 132 133 134
};

class OpBase {
 public:
X
Xin Pan 已提交
135 136 137
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
X
polish  
Xin Pan 已提交
138
        grad_op_desc_(nullptr),
X
Xin Pan 已提交
139
        backward_id_(-1) {}
140 141 142 143 144

  virtual ~OpBase() {
    if (grad_op_desc_) delete grad_op_desc_;
  }

X
Xin Pan 已提交
145
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
146

X
polish  
Xin Pan 已提交
147 148
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
149
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
150
  int forward_id_;
X
polish  
Xin Pan 已提交
151 152 153
  // When has backward, one of `grad_op_desc_` or `backward_id_` is set,
  // not both.
  framework::OpDesc* grad_op_desc_;
X
Xin Pan 已提交
154 155
  int backward_id_;

X
Xin Pan 已提交
156 157
  std::map<std::string, std::vector<VarBase*>> input_vars_;
  std::map<std::string, std::vector<VarBase*>> output_vars_;
X
Xin Pan 已提交
158 159
  std::map<std::string, std::vector<OpBase*>> pre_ops_;
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
160

X
Xin Pan 已提交
161 162
  std::map<std::string, std::vector<framework::Variable*>> grad_input_vars_;
  std::map<std::string, std::vector<framework::Variable*>> grad_output_vars_;
163 164 165 166 167 168 169 170 171 172 173
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
174
};
175

X
Xin Pan 已提交
176 177 178 179
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
Xin Pan 已提交
180
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
181

X
polish  
Xin Pan 已提交
182 183
  static int NumFuncs();

X
Xin Pan 已提交
184
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
185 186
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
187 188 189 190 191 192
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);

 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
193 194 195 196
};

}  // namespace imperative
}  // namespace paddle