sequence_concat_op.h 6.2 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
Yancey1989 已提交
14 15

#pragma once
C
chengduoZH 已提交
16

17
#include <utility>
18
#include <vector>
19

Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/op_registry.h"
C
chengduo 已提交
21
#include "paddle/fluid/operators/math/concat_and_split.h"
Y
Yancey1989 已提交
22 23 24 25

namespace paddle {
namespace operators {

C
chengduoZH 已提交
26 27 28 29 30 31 32 33 34 35 36 37
namespace detail {
template <typename Container>
inline framework::LoD ConcatLoD(const Container &xs,
                                std::vector<framework::Tensor> *xs_in_order) {
  std::vector<size_t> result;
  result.resize(xs[0].get().lod()[0].size());

  for (size_t i = 1; i < result.size(); ++i) {
    size_t sum = 0;
    for (size_t j = 0; j < xs.size(); ++j) {
      auto &x_lod = xs[j].get().lod()[0];
      const framework::Tensor &tensor = xs[j].get();
38 39 40
      if (x_lod[i - 1] < x_lod[i]) {
        xs_in_order->emplace_back(tensor.Slice(x_lod[i - 1], x_lod[i]));
      }
C
chengduoZH 已提交
41
      sum += x_lod[i];
42
    }
C
chengduoZH 已提交
43
    result[i] = sum;
44
  }
C
chengduoZH 已提交
45 46 47
  framework::LoD lod;
  lod.emplace_back(result);
  return lod;
Y
Yancey1989 已提交
48
}
49 50 51

template <typename T, typename... ARGS>
inline std::vector<std::reference_wrapper<T>> GetDataVectorSafely(
52
    const std::vector<T *> &vec, ARGS &&...args) {
53 54 55
  std::vector<std::reference_wrapper<T>> result;
  result.reserve(vec.size());
  for (auto *ptr : vec) {
56 57 58
    PADDLE_ENFORCE_NOT_NULL(ptr,
                            platform::errors::InvalidArgument(
                                "The input variable X contains nullptr."));
59 60 61 62
    result.emplace_back(*ptr);
  }
  return result;
}
C
chengduoZH 已提交
63
}  // namespace detail
Y
Yancey1989 已提交
64

Q
QI JUN 已提交
65
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
66
class SeqConcatKernel : public framework::OpKernel<T> {
Y
Yancey1989 已提交
67
 public:
C
chengduoZH 已提交
68
  void Compute(const framework::ExecutionContext &context) const override {
69 70 71
    auto xs = detail::GetDataVectorSafely(
        context.MultiInput<framework::LoDTensor>("X"));
    auto &out = *context.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
72 73 74 75

    size_t lod_size = 0;
    for (auto &x : xs) {
      if (lod_size == 0) {
76 77
        PADDLE_ENFORCE_EQ(x.get().lod().empty(),
                          false,
78 79 80
                          platform::errors::NotFound(
                              "Input(X) Tensor of SequenceConcatOp does not "
                              "contain LoD information."));
C
chengduoZH 已提交
81 82
        lod_size = x.get().lod()[0].size();
      } else {
83 84
        PADDLE_ENFORCE_EQ(lod_size,
                          x.get().lod()[0].size(),
85 86 87 88
                          platform::errors::InvalidArgument(
                              "The lod size of each input must be the same, "
                              "But the lod size of input we received is %d, "
                              "the first input is %d",
89 90
                              x.get().lod()[0].size(),
                              lod_size));
Y
Yancey1989 已提交
91 92
      }
    }
93
    PADDLE_ENFORCE_NE(
94 95
        lod_size,
        0,
96 97 98 99
        platform::errors::InvalidArgument(
            "Each input must have sequence lod information. But we "
            "received input lod size is %d",
            lod_size));
C
chengduoZH 已提交
100 101 102 103 104

    std::vector<framework::Tensor> x_in_order;
    out.set_lod(detail::ConcatLoD(xs, &x_in_order));
    out.mutable_data<T>(context.GetPlace());
    math::ConcatFunctor<DeviceContext, T> functor;
105 106
    functor(
        context.template device_context<DeviceContext>(), x_in_order, 0, &out);
Y
Yancey1989 已提交
107 108 109
  }
};

Q
QI JUN 已提交
110
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
111
class SeqConcatGradKernel : public framework::OpKernel<T> {
Y
Yancey1989 已提交
112
 public:
C
chengduoZH 已提交
113 114 115 116
  void Compute(const framework::ExecutionContext &context) const override {
    auto xs = context.MultiInput<framework::LoDTensor>("X");
    auto dxs =
        context.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
117 118
    PADDLE_ENFORCE_EQ(xs.size(),
                      dxs.size(),
119 120 121 122
                      platform::errors::InvalidArgument(
                          "The rank of Input X and Output Grad X must be "
                          "same, But the rank of Input X we received is %d, "
                          "the rank of Output Grad X is %d",
123 124
                          xs.size(),
                          dxs.size()));
C
chengduoZH 已提交
125 126 127 128 129
    for (size_t i = 0; i < dxs.size(); ++i) {
      if (dxs[i] != nullptr) {
        dxs[i]->set_lod(xs[i]->lod());
        dxs[i]->mutable_data<T>(context.GetPlace());
      }
Y
Yancey1989 已提交
130
    }
131

C
chengduoZH 已提交
132
    std::vector<framework::Tensor> sliced_x;
133
    std::vector<paddle::optional<framework::Tensor>> sliced_dx;
C
chengduoZH 已提交
134 135 136 137

    for (size_t i = 1; i < xs[0]->lod()[0].size(); ++i) {
      for (size_t j = 0; j < xs.size(); ++j) {
        const framework::LoDTensor *x = xs[j];
138 139
        framework::DDim x_dims = x->dims();

C
chengduoZH 已提交
140 141
        framework::LoDTensor *dx = dxs[j];
        auto &x_lod = x->lod()[0];
142
        if (x_lod[i - 1] == x_lod[i]) continue;
143 144 145 146 147 148 149 150 151 152 153

        auto prev_lod = x_lod[i - 1];
        auto next_lod = x_lod[i];

        x_dims[0] = next_lod - prev_lod;

        sliced_x.emplace_back();
        sliced_x.back().Resize(x_dims);

        if (dx) {
          sliced_dx.emplace_back(dx->Slice(prev_lod, next_lod));
C
chengduoZH 已提交
154
        } else {
155
          sliced_dx.emplace_back(paddle::none);
C
chengduoZH 已提交
156 157
        }
      }
158
    }
Y
Yancey1989 已提交
159

C
chengduoZH 已提交
160
    std::vector<const framework::Tensor *> sliced_x_ptr;
161
    sliced_x_ptr.reserve(sliced_x.size());
C
chengduoZH 已提交
162 163 164
    for (auto &x : sliced_x) {
      sliced_x_ptr.emplace_back(&x);
    }
Y
Yancey1989 已提交
165

166 167
    std::vector<framework::Tensor *> sliced_dx_ptr;
    sliced_dx_ptr.reserve(sliced_dx.size());
C
chengduoZH 已提交
168
    for (auto &dx : sliced_dx) {
169 170
      if (dx) {
        sliced_dx_ptr.emplace_back(&dx.get());
Y
Yancey1989 已提交
171 172
      }
    }
173 174

    math::SplitFunctor<DeviceContext, T> functor;
C
chengduoZH 已提交
175
    functor(context.template device_context<DeviceContext>(),
176
            GET_DATA_SAFELY(
C
chengduoZH 已提交
177
                context.Input<framework::Tensor>(framework::GradVarName("Out")),
178 179 180 181 182 183
                "Input",
                framework::GradVarName("Out"),
                "SeqConcatGrad"),
            sliced_x_ptr,
            0,
            &sliced_dx_ptr);
Y
Yancey1989 已提交
184 185 186 187 188
  }
};

}  // namespace operators
}  // namespace paddle