pybind.cc 55.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
39
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
40
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
41
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
42
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
45
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
46
#include "paddle/fluid/platform/enforce.h"
47
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
50
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
51 52
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
53
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
55
#include "paddle/fluid/pybind/ir.h"
56 57
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
58
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
59
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
61

62
#include "paddle/fluid/string/to_string.h"
63

D
Dong Zhihong 已提交
64
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
65
#ifndef _WIN32
Y
Yi Wang 已提交
66
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
67
#endif
Y
Yi Wang 已提交
68 69
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
70 71
#endif

M
minqiyang 已提交
72 73
#include "pybind11/stl.h"

74 75 76 77
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
78 79 80
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

81
namespace paddle {
82
namespace pybind {
83
bool IsCompiledWithCUDA() {
84
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
85 86 87 88 89 90
  return false;
#else
  return true;
#endif
}

91 92 93 94 95 96 97 98
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

99 100 101 102 103 104 105 106
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

107
bool IsCompiledWithBrpc() {
108
#ifndef PADDLE_WITH_DISTRIBUTE
109 110
  return false;
#endif
111 112 113 114 115 116

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
117 118
}

Y
update  
Yancey1989 已提交
119
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
120
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
121 122 123 124 125 126
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
127 128 129 130 131 132 133 134 135 136
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

137
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
138 139 140
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
141
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
142
  m.doc() = "C++ core of PaddlePaddle";
143

144 145 146 147
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

148
  BindException(&m);
Y
Yu Yang 已提交
149

S
sneaxiy 已提交
150
  m.def(
S
sneaxiy 已提交
151
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
152 153 154 155
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
156 157 158
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

159 160 161 162 163 164 165
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
166
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
167 168
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
169
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
170

M
minqiyang 已提交
171
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
172 173 174 175 176 177 178 179
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
180
      .def("_run_backward",
X
Xin Pan 已提交
181
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
182
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
183
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
184
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
185
      .def("_grad_ivar",
M
minqiyang 已提交
186
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
187
           py::return_value_policy::reference)
M
minqiyang 已提交
188
      .def("_copy_to",
P
Paddle CI 已提交
189
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
190 191 192 193 194
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
195
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
196
      .def("_copy_to",
P
Paddle CI 已提交
197
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
198 199 200 201 202
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
203
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
204
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
205
           py::return_value_policy::reference)
206 207 208
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
209
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
210 211 212 213
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
214

215
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
216
      .def(py::init<const std::string &>())
217 218 219 220
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
221 222 223 224 225 226 227 228 229 230
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
231 232 233 234 235 236
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
237 238 239 240 241 242 243
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
244 245
          py::return_value_policy::reference);

X
Xin Pan 已提交
246
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
247
  layer.def(py::init<>())
X
Xin Pan 已提交
248 249 250
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
251
      });
X
Xin Pan 已提交
252

X
polish  
Xin Pan 已提交
253
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
254
      .def(py::init<>())
X
Xin Pan 已提交
255 256
      .def_static(
          "apply",
X
Xin Pan 已提交
257
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
258
              -> std::vector<imperative::VarBase *> {
259 260 261 262 263 264 265 266 267 268 269
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
270 271
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
272 273 274 275 276
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
277

278 279
  BindTracer(&m);

280 281 282
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
283
      .def("_get_dims",
284
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
285
      .def("_set_dims",
Q
qijun 已提交
286
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
287
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
288
           })
Y
yuyang18 已提交
289
      .def("_set_layout",
D
dzhwinter 已提交
290 291 292
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
293
      .def("_alloc_float",
D
dzhwinter 已提交
294
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
295
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
296
           })
Y
yuyang18 已提交
297
      .def("_alloc_float",
Y
Yu Yang 已提交
298
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
299
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
300
           })
Y
yuyang18 已提交
301
      .def("_alloc_int",
Y
Yu Yang 已提交
302
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
303
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
304
           })
Y
yuyang18 已提交
305
      .def("_alloc_int",
D
dzhwinter 已提交
306
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
307
             self.mutable_data<int>(place);
Q
qijun 已提交
308
           })
Y
yuyang18 已提交
309
      .def("_alloc_int",
C
chengduoZH 已提交
310 311 312
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
313
      .def("_alloc_float",
C
chengduoZH 已提交
314 315 316
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
317 318
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
319
      .def("set", PyCPUTensorSetFromArray<double>)
320
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
321
      .def("set", PyCPUTensorSetFromArray<bool>)
322
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
323
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
324
      .def("set", PyCPUTensorSetFromArray<int8_t>)
325
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
326 327
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
328
      .def("set", PyCUDATensorSetFromArray<double>)
329
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
330
      .def("set", PyCUDATensorSetFromArray<bool>)
331
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
332
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
333
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
334 335 336 337 338 339
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
340
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
341
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
342
#endif
343
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
344 345 346 347
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
348
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
349
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
350

X
Xin Pan 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
364
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
365
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
366
     columns, hence [5, 2].
X
Xin Pan 已提交
367 368 369

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
370 371
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
395 396
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
397 398 399 400 401 402 403 404 405 406 407 408 409 410
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
411
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
412 413 414 415 416
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
417
      .def("set_lod",
418
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
419
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
420
             LoD new_lod;
421 422
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
423 424
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
425
             self.set_lod(new_lod);
S
sneaxiy 已提交
426 427 428 429 430 431 432
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
448 449 450 451
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
452
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
453 454
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
455 456

           Args:
457
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
458
           )DOC")
459 460 461 462 463 464 465 466
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
467 468 469 470 471 472 473
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
474
      // Set above comments of set_lod.
475 476 477 478 479 480 481 482
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
483 484 485 486 487
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
488
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
502

Q
qijun 已提交
503 504 505 506 507 508 509 510 511 512 513
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
514 515
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
516 517
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
518 519 520 521 522 523 524 525 526
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
527
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
528
      .def("rows", [](SelectedRows &self) {
529 530 531 532 533
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
534
      });
Q
qijun 已提交
535

536
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
537 538 539

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
540
      .def(py::init<>())
541
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
542
      .def("set_int",
543 544
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
545 546 547 548 549 550 551
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
552
      .def("get_tensor",
553 554
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
555 556
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
557 558 559
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
560 561 562 563 564
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
565 566 567
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
568
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
569 570 571 572 573
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
574
#endif
Y
Refine  
Yu Yang 已提交
575 576 577 578 579
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
580
           py::return_value_policy::reference);
581

S
sneaxiy 已提交
582
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
583

S
sneaxiy 已提交
584 585 586 587
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
588

S
sneaxiy 已提交
589 590
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
591
      .def("push",
S
sneaxiy 已提交
592
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
593
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
594
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
595
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
596
           })
S
sneaxiy 已提交
597 598 599 600
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
601

S
sneaxiy 已提交
602
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
603 604 605 606 607 608
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
609
        py::return_value_policy::copy);
S
sneaxiy 已提交
610

S
sneaxiy 已提交
611
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
631 632
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
633
      .def("var",
634
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
635
             return self.Var(name);
Y
Yu Yang 已提交
636
           },
S
sneaxiy 已提交
637 638
           py::arg("name"),
           R"DOC(
639
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
640

641
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
642
           current scope, the variable would be created. Otherwise,
643
           return the existing variable.
S
sneaxiy 已提交
644 645

           Args:
646 647
               name (str): the variable name.

S
sneaxiy 已提交
648
           Returns:
649
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
650 651 652 653
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
654
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
655
           its parent scope. Return None if not found.
656

S
sneaxiy 已提交
657 658
           Args:
               name (str): the variable name.
659

S
sneaxiy 已提交
660
           Returns:
661
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
662
           )DOC",
663
           py::return_value_policy::reference)
664
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
665 666 667 668 669 670
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
671
           py::return_value_policy::reference)
S
sneaxiy 已提交
672 673 674 675
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
676

S
sneaxiy 已提交
677 678 679 680 681 682
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
683 684
        R"DOC(
        Create a new scope.
685

S
sneaxiy 已提交
686 687 688
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
689 690
        py::return_value_policy::reference);

Y
Yu Yang 已提交
691 692
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
693 694
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
695 696 697 698 699 700 701 702 703 704
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
705 706
    return ret_values;
  });
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
723
  m.def("prune", [](const ProgramDesc &origin,
724
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
725
    ProgramDesc prog_with_targets(origin);
726
    for (const auto &t : targets) {
727
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
728
    }
729
    proto::ProgramDesc pruned_desc;
730
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
731
    return new ProgramDesc(pruned_desc);
732
  });
733 734 735 736
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
737 738 739
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
740 741
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
742
  // clang-format off
Y
Yu Yang 已提交
743
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
744 745
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
746
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
747 748 749
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
750
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
751
                      -> paddle::platform::DeviceContext* {
752
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
753
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
754
#else
Q
qijun 已提交
755
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
756
#endif
C
chengduoZH 已提交
757 758 759 760 761 762 763 764 765 766 767
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
768
// clang-format on
P
peizhilin 已提交
769
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
770 771
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
772
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
773 774 775 776 777 778 779 780 781 782 783 784
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
785 786 787 788 789 790
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
791
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
792

793 794
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
795 796 797 798 799 800
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
801
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
802

C
chengduoZH 已提交
803
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
804
      .def("__init__",
S
sneaxiy 已提交
805
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
806 807 808
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
809
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
810
           })
S
sneaxiy 已提交
811 812 813 814 815 816 817 818
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
819 820
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
821 822
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
823 824 825 826 827
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
828 829
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
830 831 832 833 834 835
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
836 837 838 839
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
840 841
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
842 843 844 845 846
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
847
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
848
             self = gpu_place;
C
chengduoZH 已提交
849 850
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
851 852
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
853
      });
Y
Yu Yang 已提交
854

Y
Yu Yang 已提交
855 856 857
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
858
                    proto::OpDesc desc;
Y
Yu Yang 已提交
859 860 861 862 863
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
864
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
865
                  })
866
      .def("run",
867
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
868 869 870
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
871
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
872 873 874 875 876
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
877 878 879 880 881 882 883
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
884 885
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
886
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
887
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
888 889 890 891
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
892

F
fengjiayi 已提交
893
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
894
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
895
      .def("close", &Executor::Close)
S
sneaxiy 已提交
896
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
897 898
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
899
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
900 901
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
902
      });
S
sneaxiy 已提交
903

D
dzhwinter 已提交
904
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
905
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
906 907
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
908

909
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
910
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
911
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
912
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
913
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
914 915 916 917 918 919
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
920

921
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
922
  m.def("get_fetch_variable", framework::GetFetchVariable);
923
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
924

X
Xin Pan 已提交
925 926
  m.def("_is_program_version_supported", IsProgramVersionSupported);

927 928 929 930 931
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
932

Y
Yu Yang 已提交
933 934 935 936 937 938 939 940 941
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
942
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
943 944
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
945 946 947 948 949 950 951 952 953 954
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
955 956 957 958 959 960 961
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
962

D
dzhwinter 已提交
963 964 965
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
966
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
967
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
968
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
969

P
peizhilin 已提交
970
#ifndef _WIN32
D
dangqingqing 已提交
971 972 973
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
974
#endif
P
peizhilin 已提交
975
#endif
Y
Yu Yang 已提交
976

977 978 979 980
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
981
      .value("kAll", platform::ProfilerState::kAll)
982 983 984 985 986 987 988 989 990 991 992 993 994
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
995
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
996
  m.def("reset_profiler", platform::ResetProfiler);
997
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
998 999 1000
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1001

1002 1003
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1004
      .def("has", &ir::Pass::Has)
1005 1006 1007
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1008
           })
1009
      .def(
1010
          "set",
1011 1012 1013
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1014 1015
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1016 1017 1018 1019
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
1020
        optim_graph.release();
F
flame 已提交
1021
      });
1022

X
fix  
Xin Pan 已提交
1023 1024
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1039
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1040

Y
yuyang18 已提交
1041
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1042 1043 1044 1045
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1057 1058 1059

        )DOC");

Y
yuyang18 已提交
1060
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1061 1062 1063 1064 1065
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1076
      .def_property(
1077 1078 1079 1080
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1081 1082 1083 1084
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1085 1086 1087 1088 1089
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1090 1091 1092 1093
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1094 1095 1096 1097 1098 1099 1100
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1112 1113 1114 1115 1116 1117
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1118

Y
yuyang18 已提交
1119
  exec_strategy.def_property(
Y
yuyang18 已提交
1120 1121 1122 1123 1124 1125 1126
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1127 1128
      });

C
chengduo 已提交
1129 1130 1131 1132
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1144
)DOC");
Y
yuyang18 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1161
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1162
            self.reduce_ = strategy;
C
chengduo 已提交
1163 1164 1165 1166 1167 1168 1169
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1170 1171 1172 1173 1174
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1175
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1176
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1177 1178 1179 1180 1181 1182
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1183 1184 1185 1186
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1187
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1188
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1189 1190 1191 1192
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1193 1194 1195 1196 1197 1198
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1199
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1209
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1210 1211
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1212
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1213 1214 1215 1216 1217 1218
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1231 1232 1233 1234 1235 1236
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1237
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1238 1239 1240 1241 1242
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
Q
qingqing01 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1272 1273 1274 1275
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1276 1277 1278 1279
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1280
      .def_property(
D
dzhwinter 已提交
1281 1282 1283
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1284 1285 1286 1287
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1288
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1289
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1290 1291 1292 1293 1294
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1295 1296

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1297
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1298
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1299
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1300 1301 1302 1303
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1304 1305 1306 1307 1308
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1309 1310 1311 1312
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1313 1314 1315 1316 1317 1318
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1319

1320
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1321
  BindAsyncExecutor(&m);
F
flame 已提交
1322 1323
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1324
  BindInferenceApi(&m);
L
Luo Tao 已提交
1325
}
1326
}  // namespace pybind
1327
}  // namespace paddle