scatter.cu.h 8.1 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14 15

#pragma once
16
#include <unordered_set>
17
#include <vector>
18
#include "math/math_function.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/tensor.h"
20
#include "paddle/fluid/memory/malloc.h"
21
#include "paddle/fluid/platform/cuda_primitives.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/platform/place.h"
Z
zchen0211 已提交
23 24 25 26

namespace paddle {
namespace operators {

27 28
using Tensor = framework::Tensor;

29 30
template <typename T, typename IndexT = int>
__global__ void ScatterInitCUDAKernel(const IndexT* indices, T* output,
S
ShenLiang 已提交
31
                                      size_t index_size, size_t slice_size) {
32
  CUDA_KERNEL_LOOP(i, index_size * slice_size) {
33 34 35 36 37 38 39
    int indices_i = i / slice_size;
    int slice_i = i - indices_i * slice_size;  // offset inside the slice
    IndexT scatter_i = indices[indices_i];
    IndexT out_i = scatter_i * slice_size + slice_i;
    *(output + out_i) = static_cast<T>(0);
  }
}
Z
zchen0211 已提交
40

41 42
template <typename T, typename IndexT = int>
__global__ void ScatterCUDAKernel(const T* params, const IndexT* indices,
Z
zchen0211 已提交
43
                                  T* output, size_t index_size,
44
                                  size_t slice_size, bool overwrite) {
45
  CUDA_KERNEL_LOOP(i, index_size * slice_size) {
Z
zchen0211 已提交
46 47
    int indices_i = i / slice_size;
    int slice_i = i - indices_i * slice_size;  // offset inside the slice
48 49
    IndexT scatter_i = indices[indices_i];
    IndexT out_i = scatter_i * slice_size + slice_i;
50 51 52 53 54
    if (overwrite) {
      *(output + out_i) = *(params + i);
    } else {
      paddle::platform::CudaAtomicAdd(output + out_i, *(params + i));
    }
Z
zchen0211 已提交
55 56 57
  }
}

58 59 60 61 62
template <typename T, typename IndexT = int>
__global__ void ScatterNdCUDAKernel(const T* update, const IndexT* indices,
                                    T* output, const int* output_dims,
                                    size_t remain_size, size_t slice_size,
                                    size_t end_size) {
63
  CUDA_KERNEL_LOOP(i, remain_size * slice_size) {
64 65 66 67 68 69 70 71 72 73 74 75 76 77
    int indices_i = i / slice_size;
    int slice_i = i - indices_i * slice_size;  // offset inside the slice
    IndexT gather_i = 0;
    int64_t temp = slice_size;
    for (int64_t j = end_size - 1; j >= 0; --j) {
      IndexT index_value = indices[indices_i * end_size + j];
      gather_i += (index_value * temp);
      temp *= output_dims[j];
    }
    IndexT output_i = gather_i + slice_i;
    paddle::platform::CudaAtomicAdd(output + output_i, *(update + i));
  }
}

Z
zchen0211 已提交
78 79 80 81 82
/**
 * A thin wrapper on gpu tensor
 * Return a new updated tensor from source tensor, scatter-assigned according to
 * index
 * input[src]: type-T source Tensor
83
 * input[index]: type-IndexT index Tensor (1-D)
Z
zchen0211 已提交
84 85
 * return: output tensor
 */
86
template <typename T, typename IndexT = int>
87 88 89
void GPUScatterAssign(const framework::ExecutionContext& context,
                      const Tensor& src, const Tensor& index, Tensor* output,
                      bool overwrite = true) {
Z
zchen0211 已提交
90
  // check index of shape 1-D
91
  const auto& ctx = context.device_context();
92 93
  if (index.dims().size() == 2) {
    PADDLE_ENFORCE_EQ(index.dims()[1], 1,
94 95 96 97 98
                      platform::errors::InvalidArgument(
                          "index.dims()[1] should be 1 when "
                          "index.dims().size() = 2 in scatter_op."
                          "But received value is [%d]",
                          index.dims()[1]));
99 100
  } else {
    PADDLE_ENFORCE_EQ(index.dims().size(), 1,
101 102 103 104
                      platform::errors::InvalidArgument(
                          "index.dims().size() should be 1 or 2 in scatter_op."
                          "But received value is [%d]",
                          index.dims().size()));
105
  }
106
  int index_size = index.dims()[0];
Z
zchen0211 已提交
107

108
  auto src_dims = src.dims();
Z
zchen0211 已提交
109 110 111 112 113 114 115
  framework::DDim output_dims(src_dims);
  output_dims[0] = index_size;

  // slice size
  int slice_size = 1;
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];

116
  const T* p_src = src.data<T>();
117
  const IndexT* p_index = index.data<IndexT>();
Z
1 api  
zchen0211 已提交
118
  T* p_output = output->data<T>();
119
  const size_t& slice_bytes = slice_size * sizeof(T);
Z
1 api  
zchen0211 已提交
120

121
  // set block and grid num
Z
1 api  
zchen0211 已提交
122 123 124 125
  int block = 512;
  int n = slice_size * index_size;
  int grid = (n + block - 1) / block;

126 127 128 129 130
  // if not overwrite mode, init data
  if (!overwrite) {
    ScatterInitCUDAKernel<T, IndexT><<<
        grid, block, 0,
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
S
ShenLiang 已提交
131
        p_index, p_output, index_size, slice_size);
132 133
  }

134
  ScatterCUDAKernel<T, IndexT><<<
Z
zchen0211 已提交
135 136
      grid, block, 0,
      reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
137
      p_src, p_index, p_output, index_size, slice_size, overwrite);
Z
zchen0211 已提交
138 139
}

S
ShenLiang 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
// The function is only for scatter grad x,
// however update grad use gather
template <typename T, typename IndexT = int>
void GPUScatterGradForX(const platform::DeviceContext& ctx, const Tensor& index,
                        Tensor* output) {
  IndexT index_size = index.dims()[0];
  auto dst_dims = output->dims();
  // slice size
  IndexT slice_size = 1;
  for (int i = 1; i < dst_dims.size(); ++i) slice_size *= dst_dims[i];
  const IndexT* p_index = index.data<IndexT>();
  T* p_output = output->data<T>();
  const size_t& slice_bytes = slice_size * sizeof(T);

  // set block and grid num
  int64_t block = 512;
  int64_t n = slice_size * index_size;
  int64_t height = (n + block - 1) / block;

  int64_t max_grid_dimx =
      reinterpret_cast<const platform::CUDADeviceContext&>(ctx)
          .GetCUDAMaxGridDimSize()
          .x;
  int64_t grid = height < max_grid_dimx ? height : max_grid_dimx;

  ScatterInitCUDAKernel<T, IndexT><<<
      grid, block, 0,
      reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
      p_index, p_output, index_size, slice_size);
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
template <typename DeviceContext, typename T, typename IndexT = int>
void GPUScatterNdAdd(const framework::ExecutionContext& context,
                     const Tensor& update, const Tensor& index,
                     Tensor* output) {
  auto index_dims = index.dims();
  auto index_dims_size = index_dims.size();

  auto output_dims = output->dims();
  auto output_dims_size = output_dims.size();

  const T* p_update = update.data<T>();
  const IndexT* p_index = index.data<IndexT>();
  T* p_output = output->data<T>();

  // final dim
  int64_t end_size = index_dims[index_dims_size - 1];
  // remain dim
  auto remain_ddim = framework::slice_ddim(index_dims, 0, index_dims_size - 1);
  int64_t remain_numel = framework::product(remain_ddim);
  // slice size
  int64_t slice_size = 1;
  for (int64_t i = end_size; i < output_dims_size; ++i) {
    slice_size *= output_dims[i];
  }
  const size_t slice_bytes = slice_size * sizeof(T);
  // put output_dims int CUDA
  // gplace and cplace
  const auto& ctx = context.template device_context<DeviceContext>();
199
  const auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
200 201 202 203 204 205 206 207
  auto cplace = platform::CPUPlace();

  std::vector<int> v_output_dims(output_dims_size);
  for (int i = 0; i < output_dims_size; ++i) {
    v_output_dims[i] = static_cast<int>(output_dims[i]);
  }
  auto& dev_ctx = context.cuda_device_context();
  int bytes = output_dims_size * sizeof(int);
208
  auto output_dims_ptr = memory::Alloc(dev_ctx, bytes);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  int* g_output_dims = reinterpret_cast<int*>(output_dims_ptr->ptr());
  memory::Copy(gplace, g_output_dims, cplace, v_output_dims.data(), bytes,
               ctx.stream());

  int block = 512;
  int n = slice_size * remain_numel;
  int grid = (n + block - 1) / block;

  ScatterNdCUDAKernel<T, IndexT><<<
      grid, block, 0,
      reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
      p_update, p_index, p_output, g_output_dims, remain_numel, slice_size,
      end_size);
}

Z
zchen0211 已提交
224 225
}  // namespace operators
}  // namespace paddle