graph_send_recv_kernel.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/graph_send_recv_kernel.h"
#include "paddle/phi/kernels/cpu/graph_send_recv_funcs.h"

#include <algorithm>
#include <set>
#include <vector>

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/hostdevice.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename IndexT, typename Functor>
void GraphSendRecvCpuLoop(const int& input_size,
                          const int& index_size,
                          const IndexT* s_index,
                          const IndexT* d_index,
                          const DenseTensor& src,
                          DenseTensor* dst,
                          const std::string& pool_type,
                          int* dst_count = nullptr) {
  Functor functor;
  if (pool_type == "SUM") {
    for (int i = 0; i < index_size; ++i) {
      const IndexT& src_idx = s_index[i];
      const IndexT& dst_idx = d_index[i];
      ElementwiseInnerOperation<T, IndexT, Functor>(
          src, dst, src_idx, dst_idx, false, functor);
    }
  } else if (pool_type == "MEAN") {
    for (int i = 0; i < index_size; ++i) {
      const IndexT& src_idx = s_index[i];
      const IndexT& dst_idx = d_index[i];
      ElementwiseInnerOperation<T, IndexT, Functor>(
          src, dst, src_idx, dst_idx, false, functor);
    }
    for (int i = 0; i < index_size; ++i) {
      IndexT dst_idx = d_index[i];
      *(dst_count + dst_idx) += 1;
    }
    for (int i = 0; i < input_size; ++i) {
      if (*(dst_count + i) == 0) continue;
      auto dst_slice = dst->Slice(i, i + 1);
      auto eigen_dst = phi::EigenVector<T>::Flatten(dst_slice);
      eigen_dst = eigen_dst / static_cast<T>(*(dst_count + i));
    }
  } else if (pool_type == "MIN" || pool_type == "MAX") {
    std::set<IndexT> existed_dst;
    for (int i = 0; i < index_size; ++i) {
      const IndexT& src_idx = s_index[i];
      const IndexT& dst_idx = d_index[i];
      bool in_set = existed_dst.find(dst_idx) != existed_dst.end();
      if (!in_set) {
        ElementwiseInnerOperation<T, IndexT, Functor>(
            src, dst, src_idx, dst_idx, true, functor);
        existed_dst.emplace(dst_idx);
      } else {
        ElementwiseInnerOperation<T, IndexT, Functor>(
            src, dst, src_idx, dst_idx, false, functor);
      }
    }
  }
}

template <typename Context, typename T, typename IndexT>
void GraphSendRecvOpKernelLaunchHelper(const Context& ctx,
                                       const DenseTensor& x,
                                       const DenseTensor& src_index,
                                       const DenseTensor& dst_index,
                                       const std::string& pool_type,
86
                                       int64_t out_size,
87 88 89 90 91 92 93 94
                                       DenseTensor* out,
                                       DenseTensor* dst_count = nullptr) {
  const int& index_size = src_index.dims()[0];

  ctx.template Alloc<T>(out);
  T* p_output = out->data<T>();
  const auto& src_dims = x.dims();
  int64_t memset_size = 1;
95 96 97 98 99 100 101 102 103 104
  if (out_size <= 0) {
    for (int i = 0; i < src_dims.size(); ++i) {
      memset_size *= src_dims[i];
    }
  } else {
    memset_size = out_size;
    for (int i = 1; i < src_dims.size(); ++i) {
      memset_size *= src_dims[i];
    }
  }
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  const size_t& memset_bytes = memset_size * sizeof(T);
  memset(p_output, 0, memset_bytes);

  if (index_size == 0) return;

  const IndexT* s_index = src_index.data<IndexT>();
  const IndexT* d_index = dst_index.data<IndexT>();
  if (pool_type == "SUM") {
    GraphSendRecvCpuLoop<T, IndexT, GraphSendRecvSumFunctor<T>>(
        src_dims[0], index_size, s_index, d_index, x, out, pool_type);
  } else if (pool_type == "MIN") {
    GraphSendRecvCpuLoop<T, IndexT, GraphSendRecvMinFunctor<T>>(
        src_dims[0], index_size, s_index, d_index, x, out, pool_type);
  } else if (pool_type == "MAX") {
    GraphSendRecvCpuLoop<T, IndexT, GraphSendRecvMaxFunctor<T>>(
        src_dims[0], index_size, s_index, d_index, x, out, pool_type);
  } else if (pool_type == "MEAN") {
    ctx.template Alloc<int>(dst_count);
    int* p_dst_count = dst_count->data<int>();
    memset(p_dst_count, 0, src_dims[0] * sizeof(int));
    GraphSendRecvCpuLoop<T, IndexT, GraphSendRecvSumFunctor<T>>(src_dims[0],
                                                                index_size,
                                                                s_index,
                                                                d_index,
                                                                x,
                                                                out,
                                                                pool_type,
                                                                p_dst_count);
  }
}

template <typename T, typename Context>
void GraphSendRecvKernel(const Context& ctx,
                         const DenseTensor& x,
                         const DenseTensor& src_index,
                         const DenseTensor& dst_index,
                         const std::string& pool_type,
142
                         int64_t out_size,
143 144 145 146 147
                         DenseTensor* out,
                         DenseTensor* dst_count) {
  auto index_type = src_index.dtype();
  if (index_type == phi::DataType::INT32) {
    GraphSendRecvOpKernelLaunchHelper<Context, T, int32_t>(
148
        ctx, x, src_index, dst_index, pool_type, out_size, out, dst_count);
149 150
  } else if (index_type == phi::DataType::INT64) {
    GraphSendRecvOpKernelLaunchHelper<Context, T, int64_t>(
151
        ctx, x, src_index, dst_index, pool_type, out_size, out, dst_count);
152 153 154 155 156 157 158 159 160 161 162 163 164
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(graph_send_recv,
                   CPU,
                   ALL_LAYOUT,
                   phi::GraphSendRecvKernel,
                   float,
                   double,
                   int,
                   int64_t) {}