softmax_with_cross_entropy_op.cc 8.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

C
caoying03 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
Y
Yu Yang 已提交
16

17 18 19 20 21 22
namespace paddle {
namespace operators {

class SoftmaxWithCrossEntropyOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
23
  void Make() override {
C
caoying03 已提交
24
    AddInput("Logits",
25
             "(Tensor, default: Tensor<float>), The unscaled log probabilities "
C
caoying03 已提交
26
             "which is a 2-D tensor with shape [N x K]. N is the batch_size, "
27 28
             "and K is the class number.");
    AddInput("Label",
C
caoying03 已提交
29 30 31 32
             "(Tensor) The ground truth which is a 2-D tensor. If soft_label "
             "is set to false, Label is a Tensor<int64> with shape [N x 1]. If "
             "soft_label is set to true, Label is a Tensor<float/double> with "
             "shape [N x K].");
C
caoying03 已提交
33 34
    AddOutput(
        "Softmax",
35
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N x K]. "
C
caoying03 已提交
36 37
        "The outputs value of softmax activation by given the input batch, "
        "which will be used in backward calculation.")
C
caoying03 已提交
38
        .AsIntermediate();
C
caoying03 已提交
39
    AddOutput("Loss",
40
              "(Tensor, default: Tensor<float>), A 2-D tensor. The cross "
C
caoying03 已提交
41
              "entropy loss with shape [N x 1].");
C
caoying03 已提交
42
    AddAttr<bool>(
43
        "soft_label",
C
caoying03 已提交
44 45 46
        "(bool, default: false), A flag to indicate whether to interpretate "
        "the given labels as soft labels.")
        .SetDefault(false);
47
    AddComment(R"DOC(
48 49 50
Softmax With Cross Entropy Operator.

Cross entropy loss with softmax is used as the output layer extensively. This
51
operator computes the softmax normalized values for each row of the input
52
tensor, after which cross-entropy loss is computed. This provides a more
53 54
numerically stable gradient.

55 56 57
Because this operator performs a softmax on logits internally, it expects
unscaled logits. This operator should not be used with the output of
softmax operator since that would produce incorrect results.
58

C
caoying03 已提交
59
When the attribute soft_label is set false, this operators expects mutually
60 61
exclusive hard labels, each sample in a batch is in exactly one class with a
probability of 1.0. Each sample in the batch will have a single label.
62

63
The equation is as follows:
64

65
1) Hard label (one-hot label, so every sample has exactly one class)
66

67
$$Loss_j =  -\text{Logit}_{Label_j} +
68
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right),
69
j = 1,..., K$$
C
caoying03 已提交
70

71
2) Soft label (each sample can have a distribution over all classes)
C
caoying03 已提交
72

73
$$Loss_j =  -\sum_{i=0}^{K}\text{Label}_i \left(\text{Logit}_i -
74
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right),
75
j = 1,...,K$$
C
caoying03 已提交
76 77

)DOC");
78 79 80 81 82 83 84
  }
};

class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

85
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
86 87 88 89 90 91 92 93 94 95
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Softmax"),
                   "Output(Softmax) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Loss"), "Output(Loss) should be not null.");

    auto logits_dims = ctx->GetInputDim("Logits");
    auto labels_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
96
    PADDLE_ENFORCE_EQ(
Q
qiaolongfei 已提交
97
        logits_dims.size(), 2UL,
98
        "The input of softmax_with_cross_entropy should be a 2-D tensor.");
Q
qiaolongfei 已提交
99
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
C
caoying03 已提交
100
                      "The labels should be a 2-D tensor.");
101

102
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
qiaolongfei 已提交
103
      PADDLE_ENFORCE_EQ(logits_dims[1], labels_dims[1],
104
                        "If Attr(soft_label) == true, the 2nd dimension of "
105 106
                        "Input(X) and Input(Label) should be equal.");
    } else {
Q
qiaolongfei 已提交
107
      PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
108
                        "If Attr(soft_label) == false, the 2nd dimension of "
109 110 111
                        "Input(Label) should be 1.");
    }

Q
qiaolongfei 已提交
112 113
    ctx->SetOutputDim("Softmax", logits_dims);
    ctx->SetOutputDim("Loss", {logits_dims[0], 1});
114

Q
qiaolongfei 已提交
115 116
    ctx->ShareLoD("Logits", /*->*/ "Softmax");
    ctx->ShareLoD("Logits", /*->*/ "Loss");
C
caoying03 已提交
117
  }
Y
Yu Yang 已提交
118

119
 protected:
120
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
121
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
122 123 124
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("Logits")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
125
  }
C
caoying03 已提交
126 127 128 129 130 131
};

class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

132
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
133 134 135 136 137 138 139 140 141 142 143
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@Grad) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Softmax"),
                   "Input(Softmax) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
                   "Output(Logits@Grad) should be not null.");

    auto softmax_dims = ctx->GetInputDim("Softmax");
    auto labels_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
C
caoying03 已提交
144
                      "The labels should be a 2-D tensor.");
145

146
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
qiaolongfei 已提交
147
      PADDLE_ENFORCE_EQ(softmax_dims[1], labels_dims[1],
148
                        "When Attr(soft_label) == true, the 2nd dimension of "
149 150
                        "Input(X) and Input(Label) should be equal.");
    } else {
Q
qiaolongfei 已提交
151
      PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
152
                        "When Attr(soft_label) == false, the 2nd dimension of "
153 154
                        "Input(Label) should be 1.");
    }
C
caoying03 已提交
155

Q
qiaolongfei 已提交
156 157
    ctx->SetOutputDim(framework::GradVarName("Logits"),
                      ctx->GetInputDim("Softmax"));
158
  }
Y
Yu Yang 已提交
159

160
 protected:
161
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
162
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
163 164 165 166
    return framework::OpKernelType(
        framework::ToDataType(
            ctx.Input<Tensor>(framework::GradVarName("Loss"))->type()),
        ctx.device_context());
Y
Yu Yang 已提交
167
  }
168 169
};

170 171 172 173 174
class SoftmaxGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
175 176
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
177 178 179 180 181 182 183 184
    grad_op->SetType("softmax_with_cross_entropy_grad");
    grad_op->SetInput("Label", Input("Label"));
    grad_op->SetInput("Softmax", Output("Softmax"));
    grad_op->SetInput("Loss", Output("Loss"));
    grad_op->SetInput(framework::GradVarName("Softmax"), OutputGrad("Softmax"));
    grad_op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
    grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits"));
    grad_op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
185
    return std::unique_ptr<framework::OpDesc>(grad_op);
186 187 188
  }
};

189 190 191 192 193
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

194
REGISTER_OPERATOR(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp,
Y
Yu Yang 已提交
195
                  ops::SoftmaxWithCrossEntropyOpMaker, ops::SoftmaxGradMaker);
196 197
REGISTER_OPERATOR(softmax_with_cross_entropy_grad,
                  ops::SoftmaxWithCrossEntropyOpGrad);
198
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy,
C
caoying03 已提交
199 200
                       ops::SoftmaxWithCrossEntropyKernel<float>,
                       ops::SoftmaxWithCrossEntropyKernel<double>);
201
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
C
caoying03 已提交
202 203
                       ops::SoftmaxWithCrossEntropyGradKernel<float>,
                       ops::SoftmaxWithCrossEntropyGradKernel<double>);