vol2col.cu 15.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

A
Abhinav Arora 已提交
15 16
#include <algorithm>
#include <vector>
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/math/vol2col.h"
D
dzhwinter 已提交
18
#include "paddle/fluid/platform/cuda_primitives.h"
C
chengduoZH 已提交
19 20 21 22 23 24 25

namespace paddle {
namespace operators {
namespace math {

template <class T>
__global__ void vol2col(int num_kernels, const T* data_vol, int depth,
C
chengduoZH 已提交
26 27 28 29 30
                        int height, int width, int dilation_d, int dilation_h,
                        int dilation_w, int filter_depth, int filter_height,
                        int filter_width, int stride_depth, int stride_height,
                        int stride_width, int padding_depth, int padding_height,
                        int padding_width, int output_detph, int output_height,
31 32 33 34 35 36
                        int output_width, T* data_col,
                        const DataLayout data_layout) {
  int input_channels =
      num_kernels / output_detph / output_height / output_width;
  int channels_col =
      input_channels * filter_depth * filter_height * filter_width;
C
chengduoZH 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    int w_out = index % output_width;
    int h_out = (index / output_width) % output_height;
    int d_out = (index / output_width / output_height) % output_detph;
    int channel_in = index / output_width / output_height / output_detph;
    int channel_out = channel_in * filter_depth * filter_height * filter_width;
    int w_in = w_out * stride_width - padding_width;
    int h_in = h_out * stride_height - padding_height;
    int d_in = d_out * stride_depth - padding_depth;

    data_col += ((channel_out * output_detph + d_out) * output_height + h_out) *
                    output_width +
                w_out;
    for (int k = 0; k < filter_depth; ++k) {
      for (int i = 0; i < filter_height; ++i) {
        for (int j = 0; j < filter_width; ++j) {
C
chengduoZH 已提交
54 55 56
          int d = d_in + k * dilation_d;
          int h = h_in + i * dilation_h;
          int w = w_in + j * dilation_w;
57
          int vol_idx;
58
          if (data_layout != DataLayout::kNHWC) {
59 60 61 62 63
            vol_idx = ((channel_in * depth + d) * height + h) * width + w;
          } else {
            vol_idx =
                ((d * height + h) * width + w) * input_channels + channel_in;
          }
C
chengduoZH 已提交
64 65
          *data_col = (d >= 0 && d < depth && h >= 0 && h < height && w >= 0 &&
                       w < width)
66
                          ? data_vol[vol_idx]
C
chengduoZH 已提交
67 68 69 70 71 72 73 74 75
                          : 0;
          data_col += output_detph * output_height * output_width;
        }
      }
    }
  }
}

/*
76 77 78 79
 * im = [input_channels,intpu_depth, input_height, input_width] for
 * channels_first
 * im = [input_depth, input_height, input_width, input_channels] for
 * channels_last
C
chengduoZH 已提交
80 81 82 83 84
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
Q
QI JUN 已提交
85
class Vol2ColFunctor<platform::CUDADeviceContext, T> {
C
chengduoZH 已提交
86
 public:
Q
QI JUN 已提交
87
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
88 89 90
                  const framework::Tensor& vol,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
91 92
                  const std::vector<int>& paddings, framework::Tensor* col,
                  const DataLayout data_layout) const {
93 94 95 96 97 98 99 100 101 102
    PADDLE_ENFORCE_EQ(
        vol.dims().size(), 4,
        platform::errors::InvalidArgument("The dimension of"
                                          " vol should be 4, but received %d.",
                                          vol.dims().size()));
    PADDLE_ENFORCE_EQ(
        col->dims().size(), 7,
        platform::errors::InvalidArgument("The dimension of"
                                          "col should be 7, but received %d.",
                                          col->dims().size()));
C
chengduoZH 已提交
103

104
    int input_channels =
105
        (data_layout != DataLayout::kNHWC ? vol.dims()[0] : vol.dims()[3]);
106
    int input_depth =
107
        (data_layout != DataLayout::kNHWC ? vol.dims()[1] : vol.dims()[0]);
108
    int input_height =
109
        (data_layout != DataLayout::kNHWC ? vol.dims()[2] : vol.dims()[1]);
110
    int input_width =
111
        (data_layout != DataLayout::kNHWC ? vol.dims()[3] : vol.dims()[2]);
C
chengduoZH 已提交
112 113 114 115 116 117
    int filter_depth = col->dims()[1];
    int filter_height = col->dims()[2];
    int filter_width = col->dims()[3];
    int output_depth = col->dims()[4];
    int output_height = col->dims()[5];
    int output_width = col->dims()[6];
C
chengduoZH 已提交
118

L
liym27 已提交
119 120 121 122 123 124 125
    bool paddings_size_is_6 = (paddings.size() == 6);
    int pad_d_forth = paddings_size_is_6 ? paddings[0] : paddings[0];
    int pad_d_back = paddings_size_is_6 ? paddings[1] : paddings[0];
    int pad_h_up = paddings_size_is_6 ? paddings[2] : paddings[1];
    int pad_h_down = paddings_size_is_6 ? paddings[3] : paddings[1];
    int pad_w_left = paddings_size_is_6 ? paddings[4] : paddings[2];
    int pad_w_right = paddings_size_is_6 ? paddings[5] : paddings[2];
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    auto input_depth_tmp = (input_depth + pad_d_forth + pad_d_back -
                            ((dilations[0] * (filter_depth - 1) + 1))) /
                               strides[0] +
                           1;
    PADDLE_ENFORCE_EQ(
        input_depth_tmp, output_depth,
        platform::errors::InvalidArgument(
            "input_depth(%d) and output_depth(%d) are mismatching.",
            input_depth_tmp, output_depth));
    auto input_height_tmp = (input_height + pad_h_up + pad_h_down -
                             ((dilations[1] * (filter_height - 1) + 1))) /
                                strides[1] +
                            1;
    PADDLE_ENFORCE_EQ(
        input_height_tmp, output_height,
        platform::errors::InvalidArgument(
            "input_height(%d) and output_height(%d) are mismatching.",
            input_height_tmp, output_height));
    auto input_width_tmp = (input_width + pad_w_left + pad_w_right -
                            ((dilations[2] * (filter_width - 1) + 1))) /
                               strides[2] +
                           1;
    PADDLE_ENFORCE_EQ(
        input_width_tmp, output_width,
        platform::errors::InvalidArgument(
            "input_width(%d) and output_width(%d) are mismatching.",
            input_width_tmp, output_width));
C
chengduoZH 已提交
153

C
chengduoZH 已提交
154 155 156 157 158
    int num_outputs =
        input_channels * output_depth * output_height * output_width;

    const int threads = 1024;
    const int blocks = (num_outputs + 1024 - 1) / 1024;
Q
QI JUN 已提交
159
    vol2col<T><<<blocks, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
160
        num_outputs, vol.data<T>(), input_depth, input_height, input_width,
C
chengduoZH 已提交
161
        dilations[0], dilations[1], dilations[2], filter_depth, filter_height,
L
liym27 已提交
162
        filter_width, strides[0], strides[1], strides[2], pad_d_forth, pad_h_up,
163 164
        pad_w_left, output_depth, output_height, output_width, col->data<T>(),
        data_layout);
C
chengduoZH 已提交
165 166 167 168 169
  }
};

template <class T>
__global__ void col2vol(int num_kernels, const T* data_col, int depth,
C
chengduoZH 已提交
170 171 172 173 174
                        int height, int width, int dilation_d, int dilation_h,
                        int dilation_w, int filter_depth, int filter_height,
                        int filter_width, int stride_depth, int stride_height,
                        int stride_width, int padding_depth, int padding_height,
                        int padding_width, int output_detph, int output_height,
175 176
                        int output_width, T* data_vol,
                        const DataLayout data_layout) {
C
chengduoZH 已提交
177 178 179 180
  const int d_filter_depth = dilation_d * (filter_depth - 1) + 1;
  const int d_filter_height = dilation_h * (filter_height - 1) + 1;
  const int d_filter_width = dilation_w * (filter_width - 1) + 1;

181
  int input_channels = num_kernels / depth / height / width;
C
chengduoZH 已提交
182 183 184
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    T src_val = 0;
185
    int w = (data_layout != DataLayout::kNHWC
186 187
                 ? index % width + padding_width
                 : (index / input_channels) % width + padding_width);
188
    int h = (data_layout != DataLayout::kNHWC
189 190
                 ? (index / width) % height + padding_height
                 : (index / input_channels / width) % height + padding_height);
191
    int d = (data_layout != DataLayout::kNHWC
192 193
                 ? (index / width / height) % depth + padding_depth
                 : index / input_channels / width / height + padding_depth);
194
    int c = (data_layout != DataLayout::kNHWC ? index / width / height / depth
195
                                              : index % input_channels);
C
chengduoZH 已提交
196

C
chengduoZH 已提交
197 198
    // compute the start and end of the output
    int w_col_start =
C
chengduoZH 已提交
199
        (w < d_filter_width) ? 0 : (w - d_filter_width) / stride_width + 1;
C
chengduoZH 已提交
200 201
    int w_col_end = min(w / stride_width + 1, output_width);
    int h_col_start =
C
chengduoZH 已提交
202
        (h < d_filter_height) ? 0 : (h - d_filter_height) / stride_height + 1;
C
chengduoZH 已提交
203 204
    int h_col_end = min(h / stride_height + 1, output_height);
    int d_col_start =
C
chengduoZH 已提交
205
        (d < d_filter_depth) ? 0 : (d - d_filter_depth) / stride_depth + 1;
C
chengduoZH 已提交
206 207 208 209 210
    int d_col_end = min(d / stride_depth + 1, output_detph);

    for (int d_col = d_col_start; d_col < d_col_end; ++d_col) {
      for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
        for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
C
chengduoZH 已提交
211 212 213 214 215 216 217 218 219 220 221 222
          int d_off = (d - d_col * stride_depth);
          int h_off = (h - h_col * stride_height);
          int w_off = (w - w_col * stride_width);
          if (d_off % dilation_d == 0 && h_off % dilation_h == 0 &&
              w_off % dilation_w == 0) {
            d_off /= dilation_d;
            h_off /= dilation_h;
            w_off /= dilation_w;

            int data_col_index =
                (((((c * filter_depth + d_off) * filter_height + h_off) *
                       filter_width +
223 224 225
                   w_off)));
            data_col_index =
                ((data_col_index * output_detph + d_col) * output_height +
C
chengduoZH 已提交
226 227 228 229 230
                 h_col) *
                    output_width +
                w_col;
            src_val += data_col[data_col_index];
          }
C
chengduoZH 已提交
231 232 233 234 235 236 237 238
        }
      }
    }
    data_vol[index] = src_val;
  }
}

/*
239 240 241 242
 * im = [input_channels,intpu_depth, input_height, input_width] for
 * channels_first
 * im = [input_depth, input_height, input_width, input_channels] for
 * channels_last
C
chengduoZH 已提交
243 244 245 246 247
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
Q
QI JUN 已提交
248
class Col2VolFunctor<platform::CUDADeviceContext, T> {
C
chengduoZH 已提交
249
 public:
Q
QI JUN 已提交
250
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
251 252 253
                  const framework::Tensor& col,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
254 255
                  const std::vector<int>& paddings, framework::Tensor* vol,
                  const DataLayout data_layout) const {
256 257 258 259 260 261 262 263 264 265
    PADDLE_ENFORCE_EQ(
        vol->dims().size(), 4,
        platform::errors::InvalidArgument("The dimension of vol"
                                          " should be 4, but received %d.",
                                          vol->dims().size()));
    PADDLE_ENFORCE_EQ(
        col.dims().size(), 7,
        platform::errors::InvalidArgument("The dimension of col"
                                          " should be 7, but received %d.",
                                          col.dims().size()));
C
chengduoZH 已提交
266

267
    int input_channels =
268
        (data_layout != DataLayout::kNHWC ? vol->dims()[0] : vol->dims()[3]);
269
    int input_depth =
270
        (data_layout != DataLayout::kNHWC ? vol->dims()[1] : vol->dims()[0]);
271
    int input_height =
272
        (data_layout != DataLayout::kNHWC ? vol->dims()[2] : vol->dims()[1]);
273
    int input_width =
274
        (data_layout != DataLayout::kNHWC ? vol->dims()[3] : vol->dims()[2]);
C
chengduoZH 已提交
275 276 277 278 279 280 281
    int filter_depth = col.dims()[1];
    int filter_height = col.dims()[2];
    int filter_width = col.dims()[3];
    int output_depth = col.dims()[4];
    int output_height = col.dims()[5];
    int output_width = col.dims()[6];

L
liym27 已提交
282 283 284 285 286 287 288 289
    bool paddings_size_is_6 = (paddings.size() == 6);
    int pad_d_forth = paddings_size_is_6 ? paddings[0] : paddings[0];
    int pad_d_back = paddings_size_is_6 ? paddings[1] : paddings[0];
    int pad_h_up = paddings_size_is_6 ? paddings[2] : paddings[1];
    int pad_h_down = paddings_size_is_6 ? paddings[3] : paddings[1];
    int pad_w_left = paddings_size_is_6 ? paddings[4] : paddings[2];
    int pad_w_right = paddings_size_is_6 ? paddings[5] : paddings[2];

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    auto input_depth_tmp = (input_depth + pad_d_forth + pad_d_back -
                            ((dilations[0] * (filter_depth - 1) + 1))) /
                               strides[0] +
                           1;
    PADDLE_ENFORCE_EQ(input_depth_tmp, output_depth,
                      platform::errors::InvalidArgument(
                          "input_depth(%d)"
                          " and output_depth(%d) are mismatching.",
                          input_depth_tmp, output_depth));
    auto input_height_tmp = (input_height + pad_h_up + pad_h_down -
                             ((dilations[1] * (filter_height - 1) + 1))) /
                                strides[1] +
                            1;
    PADDLE_ENFORCE_EQ(input_height_tmp, output_height,
                      platform::errors::InvalidArgument(
                          "input_height(%d)"
                          " and output_height(%d) are mismatching.",
                          input_height_tmp, output_height));
    auto input_width_tmp = (input_width + pad_w_left + pad_w_right -
                            ((dilations[2] * (filter_width - 1) + 1))) /
                               strides[2] +
                           1;
    PADDLE_ENFORCE_EQ(input_width_tmp, output_width,
                      platform::errors::InvalidArgument(
                          "input_width(%d)"
                          " and output_width(%d) are mismatching.",
                          input_width_tmp, output_width));
C
chengduoZH 已提交
317

C
chengduoZH 已提交
318 319 320 321 322
    int num_kernels = input_channels * input_depth * input_height * input_width;

    const int threads = 1024;
    const int blocks = (num_kernels + 1024 - 1) / 1024;

Q
QI JUN 已提交
323
    col2vol<T><<<blocks, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
324
        num_kernels, col.data<T>(), input_depth, input_height, input_width,
C
chengduoZH 已提交
325
        dilations[0], dilations[1], dilations[2], filter_depth, filter_height,
L
liym27 已提交
326
        filter_width, strides[0], strides[1], strides[2], pad_d_forth, pad_h_up,
327 328
        pad_w_left, output_depth, output_height, output_width, vol->data<T>(),
        data_layout);
C
chengduoZH 已提交
329 330 331
  }
};

Q
QI JUN 已提交
332 333 334 335
template class Vol2ColFunctor<platform::CUDADeviceContext, float>;
template class Vol2ColFunctor<platform::CUDADeviceContext, double>;
template class Col2VolFunctor<platform::CUDADeviceContext, float>;
template class Col2VolFunctor<platform::CUDADeviceContext, double>;
C
chengduoZH 已提交
336 337 338 339

}  // namespace math
}  // namespace operators
}  // namespace paddle