roi_pool_grad_kernel.cu 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/roi_pool_grad_kernel.h"

17 18
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <typename T>
__global__ void GPURoiPoolBackward(const int nthreads,
                                   const T* input_rois,
                                   const T* output_grad,
                                   const int64_t* arg_max_data,
                                   const int num_rois,
                                   const float spatial_scale,
                                   const int channels,
                                   const int height,
                                   const int width,
                                   const int pooled_height,
                                   const int pooled_width,
                                   int* box_batch_id_data,
                                   T* input_grad) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % channels;
    int n = i / pooled_width / pooled_height / channels;

    int roi_batch_ind = box_batch_id_data[n];
    int input_offset = (roi_batch_ind * channels + c) * height * width;
    int output_offset = (n * channels + c) * pooled_height * pooled_width;
    const T* offset_output_grad = output_grad + output_offset;
    T* offset_input_grad = input_grad + input_offset;
    const int64_t* offset_arg_max_data = arg_max_data + output_offset;

    int arg_max = offset_arg_max_data[ph * pooled_width + pw];
    if (arg_max != -1) {
      paddle::platform::CudaAtomicAdd(
          offset_input_grad + arg_max,
          static_cast<T>(offset_output_grad[ph * pooled_width + pw]));
    }
  }
}

template <typename T, typename Context>
void RoiPoolGradKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& boxes,
77
                       const paddle::optional<DenseTensor>& boxes_num,
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
                       const DenseTensor& arg_max,
                       const DenseTensor& out_grad,
                       int pooled_height,
                       int pooled_width,
                       float spatial_scale,
                       DenseTensor* dx) {
  auto x_dims = x.dims();
  int channels = x_dims[1];
  int height = x_dims[2];
  int width = x_dims[3];
  int rois_num = boxes.dims()[0];

  if (dx) {
    DenseTensor box_batch_id_list;
    box_batch_id_list.Resize({rois_num});
    int* box_batch_id_data =
        dev_ctx.template HostAlloc<int>(&box_batch_id_list);

    auto gplace = dev_ctx.GetPlace();
    if (boxes_num) {
      int boxes_batch_size = boxes_num->numel();
      std::vector<int> boxes_num_list(boxes_batch_size);
      paddle::memory::Copy(phi::CPUPlace(),
                           boxes_num_list.data(),
                           gplace,
                           boxes_num->data<int>(),
                           sizeof(int) * boxes_batch_size,
                           0);
      int start = 0;
      for (int n = 0; n < boxes_batch_size; ++n) {
        for (int i = start; i < start + boxes_num_list[n]; ++i) {
          box_batch_id_data[i] = n;
        }
        start += boxes_num_list[n];
      }
    } else {
      auto boxes_lod = boxes.lod().back();
      int boxes_batch_size = boxes_lod.size() - 1;
      for (int n = 0; n < boxes_batch_size; ++n) {
        for (size_t i = boxes_lod[n]; i < boxes_lod[n + 1]; ++i) {
          box_batch_id_data[i] = n;
        }
      }
    }
    int bytes = box_batch_id_list.numel() * sizeof(int);
123 124 125 126
    auto roi_ptr = paddle::memory::Alloc(
        dev_ctx.GetPlace(),
        bytes,
        phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    paddle::memory::Copy(gplace,
                         roi_id_data,
                         phi::CPUPlace(),
                         box_batch_id_data,
                         bytes,
                         dev_ctx.stream());

    dev_ctx.template Alloc<T>(dx);
    phi::funcs::SetConstant<Context, T> set_zero;
    set_zero(dev_ctx, dx, static_cast<T>(0));

    int output_grad_size = out_grad.numel();
    int blocks = NumBlocks(output_grad_size);
    int threads = kNumCUDAThreads;

    if (output_grad_size > 0) {
144 145 146 147 148 149 150 151 152 153 154 155 156 157
      GPURoiPoolBackward<T>
          <<<blocks, threads, 0, dev_ctx.stream()>>>(output_grad_size,
                                                     boxes.data<T>(),
                                                     out_grad.data<T>(),
                                                     arg_max.data<int64_t>(),
                                                     rois_num,
                                                     spatial_scale,
                                                     channels,
                                                     height,
                                                     width,
                                                     pooled_height,
                                                     pooled_width,
                                                     roi_id_data,
                                                     dx->data<T>());
158 159 160 161 162 163 164 165 166 167
    }
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(
    roi_pool_grad, GPU, ALL_LAYOUT, phi::RoiPoolGradKernel, float, double) {
  kernel->InputAt(3).SetDataType(phi::DataType::INT64);
}