flip_kernel.cu 5.2 KB
Newer Older
Y
Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/flip_kernel.h"

Y
Yang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T>
__global__ void flip_cuda_kernel(const int N,
                                 const T* in_data,
                                 T* out_data,
                                 int64_t* x_shape,
                                 int64_t* x_stride,
                                 int* flip_dims,
                                 int flip_dims_size,
                                 int total_dims) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx >= N) {
    return;
  }

  int cur_indices = idx, rem = 0, dst_offset = 0;
  for (int i = 0; i < total_dims; ++i) {
    int64_t temp = cur_indices;
    cur_indices = cur_indices / x_stride[i];
    rem = temp - cur_indices * x_stride[i];
    // flip the indices if it is in flip_dims
    for (int j = 0; j < flip_dims_size; ++j) {
      if (i == flip_dims[j]) {
        cur_indices = x_shape[i] - 1 - cur_indices;
      }
    }
    dst_offset += cur_indices * x_stride[i];
    cur_indices = rem;
  }
  out_data[idx] = in_data[dst_offset];
}

template <typename T, typename Context>
void FlipKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const std::vector<int>& axis,
                DenseTensor* out) {
  const auto gplace = dev_ctx.GetPlace();
  auto cplace = phi::CPUPlace();
  std::vector<int> flip_dims = axis;

  auto* in_data = x.data<T>();
  auto* out_data = dev_ctx.template Alloc<T>(out);

  const int flip_dims_size = static_cast<int>(flip_dims.size());
  auto x_dims = x.dims();
  const int total_dims = x_dims.size();
  const int N = x.numel();

  int block_size = 512;
  dim3 dim_block(block_size);
  dim3 dim_grid((N + block_size - 1) / block_size);

  for (size_t i = 0; i < flip_dims.size(); ++i) {
    if (flip_dims[i] < 0) {
      flip_dims[i] += total_dims;
    }
  }

  auto x_stride = phi::stride(x_dims);
  std::vector<int64_t> x_dims_v = phi::vectorize(x_dims);
  std::vector<int64_t> x_stride_v = phi::vectorize(x_stride);

  int bytes = total_dims * sizeof(int64_t);
88 89 90 91
  auto x_strides_array_tmp = paddle::memory::Alloc(
      dev_ctx.GetPlace(),
      bytes,
      phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
Y
Yang 已提交
92 93 94 95 96 97 98 99 100
  int64_t* x_strides_array_gpu =
      reinterpret_cast<int64_t*>(x_strides_array_tmp->ptr());
  paddle::memory::Copy(gplace,
                       x_strides_array_gpu,
                       cplace,
                       x_stride_v.data(),
                       bytes,
                       dev_ctx.stream());

101 102 103 104
  auto x_shape_array_tmp = paddle::memory::Alloc(
      dev_ctx.GetPlace(),
      bytes,
      phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
Y
Yang 已提交
105 106 107 108 109 110 111 112 113 114
  int64_t* x_shape_array_gpu =
      reinterpret_cast<int64_t*>(x_shape_array_tmp->ptr());
  paddle::memory::Copy(gplace,
                       x_shape_array_gpu,
                       cplace,
                       x_dims_v.data(),
                       bytes,
                       dev_ctx.stream());

  bytes = flip_dims_size * sizeof(int);
115 116 117 118
  auto flip_dims_array_tmp = paddle::memory::Alloc(
      dev_ctx.GetPlace(),
      bytes,
      phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
Y
Yang 已提交
119 120 121 122 123 124 125 126
  int* flip_dims_array_gpu = reinterpret_cast<int*>(flip_dims_array_tmp->ptr());
  paddle::memory::Copy(gplace,
                       flip_dims_array_gpu,
                       cplace,
                       flip_dims.data(),
                       bytes,
                       dev_ctx.stream());

127 128 129 130 131 132 133 134 135
  flip_cuda_kernel<T>
      <<<dim_grid, dim_block, 0, dev_ctx.stream()>>>(N,
                                                     in_data,
                                                     out_data,
                                                     x_shape_array_gpu,
                                                     x_strides_array_gpu,
                                                     flip_dims_array_gpu,
                                                     flip_dims_size,
                                                     total_dims);
Y
Yang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
}
}  // namespace phi

PD_REGISTER_KERNEL(flip,
                   GPU,
                   ALL_LAYOUT,
                   phi::FlipKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   int,
                   int64_t,
                   bool,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}