cholesky_kernel.cu 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_WITH_HIP
// HIP not support cusolver

18 19
#include "paddle/phi/kernels/cholesky_kernel.h"

20
#include <thrust/device_vector.h>
21

22 23
#include <algorithm>
#include <vector>
24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/phi/backends/dynload/cusolver.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T>
struct MatrixBandPartFunctor {
  /*! Set output as input value outside a central band and 0 inside that band.
   * That is: output[i, j, ..., m, n] = in_band(m, n) * input[i, j, ..., m, n]
   * where: in_band(m, n) = (num_lower < 0 || (m-n) <= num_lower)) && (num_upper
   * < 0 || (n-m) <= num_upper)
   */
  MatrixBandPartFunctor(const int m,
                        const int n,
                        const int num_lower_diags,
                        const int num_upper_diags,
                        const T* input,
                        T* output)
      : m_(m),
        n_(n),
        num_lower_diags_(num_lower_diags),
        num_upper_diags_(num_upper_diags),
        input_(input),
        output_(output) {}

  HOSTDEVICE void operator()(size_t index) const {
    const int col = index % n_;
    const int row = (index / n_) % m_;
    const int band_start = (num_lower_diags_ < 0 ? 0 : row - num_lower_diags_);
    const int band_end =
        (num_upper_diags_ < 0 ? n_ : row + num_upper_diags_ + 1);
    if (col < band_start || col >= band_end) {
      output_[index] = static_cast<T>(0);
    } else {
      output_[index] = input_[index];
    }
  }

  const int m_, n_, num_lower_diags_, num_upper_diags_;
  const T* input_;
  T* output_;
};

#define FUNC_WITH_TYPES(m) m(float, S) m(double, D)

#define POTRF_INSTANCE(T, C)                                             \
  void Potrf(const GPUContext& dev_ctx,                                  \
             cublasFillMode_t uplo,                                      \
             int n,                                                      \
             T* A,                                                       \
             int lda,                                                    \
             int* info) {                                                \
    auto handle = dev_ctx.cusolver_dn_handle();                          \
    int workspace_size = 0;                                              \
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDn##C##potrf_bufferSize( \
        handle, uplo, n, A, lda, &workspace_size));                      \
84 85 86 87
    auto workspace = paddle::memory::Alloc(                              \
        dev_ctx.GetPlace(),                                              \
        workspace_size,                                                  \
        phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream()))); \
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    T* workspace_ptr = reinterpret_cast<T*>(workspace->ptr());           \
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDn##C##potrf(            \
        handle, uplo, n, A, lda, workspace_ptr, workspace_size, info));  \
  }

FUNC_WITH_TYPES(POTRF_INSTANCE);

#if CUDA_VERSION >= 9020 && !defined(_WIN32)
#define POTRF_BATCH_INSTANCE(T, C)                                   \
  void PotrfBatched(const GPUContext& dev_ctx,                       \
                    cublasFillMode_t uplo,                           \
                    int n,                                           \
                    T* Aarray[],                                     \
                    int lda,                                         \
                    int* info_array,                                 \
                    int batch_size) {                                \
    auto handle = dev_ctx.cusolver_dn_handle();                      \
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDn##C##potrfBatched( \
        handle, uplo, n, Aarray, lda, info_array, batch_size));      \
  }

FUNC_WITH_TYPES(POTRF_BATCH_INSTANCE);
#endif

template <typename T, typename Context>
void CholeskyKernel(const Context& dev_ctx,
                    const DenseTensor& x,
                    bool upper,
                    DenseTensor* out) {
  auto& dims = x.dims();
  int batch_count = 1;
  for (int i = 0; i < dims.size() - 2; i++) {
    batch_count *= dims[i];
  }
  int m = dims[dims.size() - 1];
  int tensor_size = batch_count * m * m;

  const auto* x_data = x.data<T>();
  auto* out_data = dev_ctx.template Alloc<T>(out);

  // matrices are assumed to be stored in column-major order in cusolver
  cublasFillMode_t uplo =
      upper ? CUBLAS_FILL_MODE_LOWER : CUBLAS_FILL_MODE_UPPER;
  // portf is inplace, thus copy the triangular part of the input matrices to
  // the output and set the other triangular part to 0 firstly
  paddle::platform::ForRange<GPUContext> for_range(dev_ctx, tensor_size);
  if (upper) {
    MatrixBandPartFunctor<T> matrix_band_part_functor(m,
                                                      m,
                                                      /* num_lower_diags */ 0,
                                                      /* num_upper_diags */ m,
                                                      x_data,
                                                      out_data);
    for_range(matrix_band_part_functor);
  } else {
    MatrixBandPartFunctor<T> matrix_band_part_functor(m,
                                                      m,
                                                      /* num_lower_diags */ m,
                                                      /* num_upper_diags */ 0,
                                                      x_data,
                                                      out_data);
    for_range(matrix_band_part_functor);
  }

152 153 154 155
  auto info = paddle::memory::Alloc(
      dev_ctx.GetPlace(),
      sizeof(int) * batch_count,
      phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  auto* info_ptr = reinterpret_cast<int*>(info->ptr());

#if CUDA_VERSION >= 9020 && !defined(_WIN32)
  if (batch_count > 1) {
    std::vector<T*> output_ptrs;
    for (int i = 0; i < batch_count; i++) {
      output_ptrs.emplace_back(out_data + i * m * m);
    }
    thrust::device_vector<T*> dev_output_ptrs(output_ptrs.begin(),
                                              output_ptrs.end());
    PotrfBatched(dev_ctx,
                 uplo,
                 m,
                 thrust::raw_pointer_cast(dev_output_ptrs.data()),
                 m,
                 info_ptr,
                 batch_count);
    // TODO(guosheng): There seems to a bug in cusolver potrfBatched and need
    // to clear the upper triangle of the output. Remove this workaround once
    // the bug is fixed.
    if (!upper) {
      MatrixBandPartFunctor<T> matrix_band_part_functor(m,
                                                        m,
                                                        /* num_lower_diags */ m,
                                                        /* num_upper_diags */ 0,
                                                        out_data,
                                                        out_data);
      for_range(matrix_band_part_functor);
    }
  } else {
#endif
    for (int i = 0; i < batch_count; i++) {
      Potrf(dev_ctx, uplo, m, out_data + i * m * m, m, info_ptr + i);
    }

#if CUDA_VERSION >= 9020 && !defined(_WIN32)
  }
#endif
  // check the info
  std::vector<int> error_info;  // only for checking positive matrix
  error_info.resize(batch_count);

  paddle::memory::Copy(CPUPlace(),
                       error_info.data(),
                       dev_ctx.GetPlace(),
                       info_ptr,
                       sizeof(int) * batch_count,
                       dev_ctx.stream());

  for (int i = 0; i < batch_count; ++i) {
    PADDLE_ENFORCE_EQ(error_info[i],
                      0,
                      errors::PreconditionNotMet(
                          "For batch [%d]: U(%d, %d) is zero, singular U.",
                          i,
                          error_info[i],
                          error_info[i]));
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(cholesky,  // cuda_only
                   GPU,
                   ALL_LAYOUT,
                   phi::CholeskyKernel,
                   float,
                   double) {}

#endif  // not PADDLE_WITH_HIP