box_coder.cu 10.9 KB
Newer Older
L
lyq 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/box_coder_kernel.h"

#include <thrust/device_vector.h>
#include <thrust/host_vector.h>

#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/box_coder.h"

namespace phi {

template <typename T>
__global__ void EncodeCenterSizeKernel(const T *prior_box_data,
                                       const T *prior_box_var_data,
                                       const T *target_box_data,
                                       const int row,
                                       const int col,
                                       const int len,
                                       const bool normalized,
                                       const T prior_box_var_size,
                                       const float *variance,
                                       const int var_size,
                                       T *output) {
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < row * col) {
    const int row_idx = idx / col;
    const int col_idx = idx % col;
    T prior_box_width = prior_box_data[col_idx * len + 2] -
                        prior_box_data[col_idx * len] + (normalized == false);
    T prior_box_height = prior_box_data[col_idx * len + 3] -
                         prior_box_data[col_idx * len + 1] +
                         (normalized == false);
    T prior_box_center_x = prior_box_data[col_idx * len] + prior_box_width / 2;
    T prior_box_center_y =
        prior_box_data[col_idx * len + 1] + prior_box_height / 2;

    T target_box_center_x =
        (target_box_data[row_idx * len + 2] + target_box_data[row_idx * len]) /
        2;
    T target_box_center_y = (target_box_data[row_idx * len + 3] +
                             target_box_data[row_idx * len + 1]) /
                            2;
    T target_box_width = target_box_data[row_idx * len + 2] -
                         target_box_data[row_idx * len] + (normalized == false);
    T target_box_height = target_box_data[row_idx * len + 3] -
                          target_box_data[row_idx * len + 1] +
                          (normalized == false);

    output[idx * len] =
        (target_box_center_x - prior_box_center_x) / prior_box_width;
    output[idx * len + 1] =
        (target_box_center_y - prior_box_center_y) / prior_box_height;
    output[idx * len + 2] = log(fabs(target_box_width / prior_box_width));
    output[idx * len + 3] = log(fabs(target_box_height / prior_box_height));
    if (prior_box_var_data) {
      int prior_var_offset = col_idx * len;
      output[idx * len] /= prior_box_var_data[prior_var_offset];
      output[idx * len + 1] /= prior_box_var_data[prior_var_offset + 1];
      output[idx * len + 2] /= prior_box_var_data[prior_var_offset + 2];
      output[idx * len + 3] /= prior_box_var_data[prior_var_offset + 3];
    } else if (var_size == 4) {
      for (int k = 0; k < 4; ++k) {
        output[idx * len + k] /= static_cast<T>(variance[k]);
      }
    }
  }
}

template <typename T>
__global__ void DecodeCenterSizeKernel(const T *prior_box_data,
                                       const T *prior_box_var_data,
                                       const T *target_box_data,
                                       const int row,
                                       const int col,
                                       const int len,
                                       const bool normalized,
                                       const T prior_box_var_size,
                                       const float *variance,
                                       const int var_size,
                                       const int axis,
                                       T *output) {
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  int prior_box_offset = 0;
  if (idx < row * col) {
    const int col_idx = idx % col;
    const int row_idx = idx / col;
    prior_box_offset = axis == 0 ? col_idx * len : row_idx * len;
    T prior_box_width = prior_box_data[prior_box_offset + 2] -
                        prior_box_data[prior_box_offset] +
                        (normalized == false);
    T prior_box_height = prior_box_data[prior_box_offset + 3] -
                         prior_box_data[prior_box_offset + 1] +
                         (normalized == false);
    T prior_box_center_x =
        prior_box_data[prior_box_offset] + prior_box_width / 2;
    T prior_box_center_y =
        prior_box_data[prior_box_offset + 1] + prior_box_height / 2;
    T target_box_width, target_box_height;
    T target_box_center_x, target_box_center_y;
    T box_var_x = T(1), box_var_y = T(1);
    T box_var_w = T(1), box_var_h = T(1);
    if (prior_box_var_data) {
      int prior_var_offset = axis == 0 ? col_idx * len : row_idx * len;
      box_var_x = prior_box_var_data[prior_var_offset];
      box_var_y = prior_box_var_data[prior_var_offset + 1];
      box_var_w = prior_box_var_data[prior_var_offset + 2];
      box_var_h = prior_box_var_data[prior_var_offset + 3];
    } else if (var_size == 4) {
      box_var_x = static_cast<T>(variance[0]);
      box_var_y = static_cast<T>(variance[1]);
      box_var_w = static_cast<T>(variance[2]);
      box_var_h = static_cast<T>(variance[3]);
    }
    target_box_width =
        exp(box_var_w * target_box_data[idx * len + 2]) * prior_box_width;
    target_box_height =
        exp(box_var_h * target_box_data[idx * len + 3]) * prior_box_height;
    target_box_center_x =
        box_var_x * target_box_data[idx * len] * prior_box_width +
        prior_box_center_x;
    target_box_center_y =
        box_var_y * target_box_data[idx * len + 1] * prior_box_height +
        prior_box_center_y;

    output[idx * len] = target_box_center_x - target_box_width / 2;
    output[idx * len + 1] = target_box_center_y - target_box_height / 2;
    output[idx * len + 2] =
        target_box_center_x + target_box_width / 2 - (normalized == false);
    output[idx * len + 3] =
        target_box_center_y + target_box_height / 2 - (normalized == false);
  }
}

template <typename T, typename Context>
void BoxCoderKernel(const Context &dev_ctx,
                    const DenseTensor &prior_box,
                    const paddle::optional<DenseTensor> &prior_box_var,
                    const DenseTensor &target_box,
                    const std::string &code_type_str,
                    bool normalized,
                    int axis,
                    const std::vector<float> &variance,
                    DenseTensor *output_box) {
  const T *prior_box_data = prior_box.template data<T>();
  const T *target_box_data = target_box.template data<T>();
  const T *prior_box_var_data = nullptr;
  auto prior_box_var_size = 0;
  if (prior_box_var) {
    PADDLE_ENFORCE_EQ(variance.empty(),
                      true,
                      phi::errors::InvalidArgument(
                          "Input 'PriorBoxVar' and attribute 'variance'"
                          " of BoxCoder operator should not be used at the "
                          "same time."));
    prior_box_var_data = prior_box_var->data<T>();
    prior_box_var_size = prior_box_var->dims().size();
  }
  if (!(variance.empty())) {
    PADDLE_ENFORCE_EQ(static_cast<int>(variance.size()),
                      4,
                      phi::errors::InvalidArgument(
                          "Size of attribute 'variance' in BoxCoder operator"
                          " should be 4. But received size is %d",
                          variance.size()));
  }

  if (target_box.lod().size()) {
    PADDLE_ENFORCE_EQ(target_box.lod().size(),
                      1,
                      phi::errors::InvalidArgument(
                          "Input 'TargetBox' of BoxCoder operator only"
                          " supports LoD with one level."));
  }
  const int var_size = static_cast<int>(variance.size());
  auto code_type = phi::funcs::GetBoxCodeType(code_type_str);
  auto row = target_box.dims()[0];
  auto col = prior_box.dims()[0];
  if (code_type == phi::funcs::BoxCodeType::kDecodeCenterSize) {
    col = target_box.dims()[1];
  }
  auto len = prior_box.dims()[1];
  int block = 512;
  int grid = (row * col + block - 1) / block;

  int bytes = var_size * sizeof(float);
202 203 204 205
  auto dev_var = paddle::memory::Alloc(
      dev_ctx.GetPlace(),
      bytes,
      phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
L
lyq 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  float *dev_var_data = reinterpret_cast<float *>(dev_var->ptr());
  auto cplace = phi::CPUPlace();
  const auto gplace = dev_ctx.GetPlace();
  paddle::memory::Copy(
      gplace, dev_var_data, cplace, &variance[0], bytes, dev_ctx.stream());

  output_box->Resize({row, col, len});
  dev_ctx.template Alloc<T>(output_box);
  T *output = output_box->data<T>();

  if (code_type == phi::funcs::BoxCodeType::kEncodeCenterSize) {
    EncodeCenterSizeKernel<T>
        <<<grid, block, 0, dev_ctx.stream()>>>(prior_box_data,
                                               prior_box_var_data,
                                               target_box_data,
                                               row,
                                               col,
                                               len,
                                               normalized,
                                               prior_box_var_size,
                                               dev_var_data,
                                               var_size,
                                               output);
  } else if (code_type == phi::funcs::BoxCodeType::kDecodeCenterSize) {
    DecodeCenterSizeKernel<T>
        <<<grid, block, 0, dev_ctx.stream()>>>(prior_box_data,
                                               prior_box_var_data,
                                               target_box_data,
                                               row,
                                               col,
                                               len,
                                               normalized,
                                               prior_box_var_size,
                                               dev_var_data,
                                               var_size,
                                               axis,
                                               output);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(
    box_coder, GPU, ALL_LAYOUT, phi::BoxCoderKernel, float, double) {}