c_broadcast_op.cu.cc 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/collective/c_broadcast_op.h"

17
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
18
#include "paddle/fluid/platform/collective_helper.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
20
#endif
L
lilong12 已提交
21 22
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/phi/api/include/tensor.h"
23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

template <typename T>
class CBroadcastOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
31
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
32 33 34
    auto x = ctx.Input<framework::LoDTensor>("X");
    auto out = ctx.Output<framework::LoDTensor>("Out");
    int numel = x->numel();
35 36
    ncclDataType_t dtype =
        platform::ToNCCLDataType(framework::TransToProtoVarType(x->dtype()));
37 38 39

    int rid = ctx.Attr<int>("ring_id");
    auto place = ctx.GetPlace();
40
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
L
lilong12 已提交
41 42 43 44 45 46 47
    auto map = distributed::ProcessGroupMapFromGid::getInstance();
    if (map->has(rid)) {
      // Use ProcessGroup
      distributed::ProcessGroup* pg = map->get(rid);
      pg->Broadcast(x, out);
      return;
    }
48

49
    gpuStream_t stream = nullptr;
50 51 52 53 54 55 56 57 58
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

    int root = ctx.Attr<int>("root");
    if (root == comm->rank()) {
59
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclBcast(
60 61 62 63 64 65 66 67 68 69 70 71
          reinterpret_cast<void*>(const_cast<T*>(x->data<T>())), numel, dtype,
          root, comm->comm(), stream));
      VLOG(3) << "rank " << comm->rank() << " invoke Bcast. sent "
              << x->numel();

      if (out != x) {
        framework::TensorCopy(
            *static_cast<const framework::Tensor*>(x), place,
            *platform::DeviceContextPool::Instance().Get(place),
            static_cast<framework::Tensor*>(out));
      }
    } else {
72
      PADDLE_ENFORCE_GPU_SUCCESS(
73 74
          platform::dynload::ncclBcast(out->mutable_data<T>(place), numel,
                                       dtype, root, comm->comm(), stream));
75
      VLOG(3) << "rank " << comm->rank() << " invoke Bcast. recieved "
76
              << phi::product(out->dims());
77 78 79 80 81
    }

    out->Resize(x->dims());
    out->set_lod(x->lod());
#else
M
MRXLT 已提交
82 83
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with GPU."));
84 85 86 87 88 89 90
#endif
  }
};

}  // namespace operators
}  // namespace paddle

91 92 93
namespace ops = paddle::operators;
namespace plat = paddle::platform;

94 95 96 97 98
REGISTER_OP_CUDA_KERNEL(c_broadcast, ops::CBroadcastOpCUDAKernel<float>,
                        ops::CBroadcastOpCUDAKernel<double>,
                        ops::CBroadcastOpCUDAKernel<int>,
                        ops::CBroadcastOpCUDAKernel<int64_t>,
                        ops::CBroadcastOpCUDAKernel<plat::float16>);