test_adaptive_max_pool1d.py 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
17
from op_test import OpTest, check_out_dtype
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
import paddle.fluid.core as core
from paddle.fluid import compiler, Program, program_guard
import paddle
import paddle.nn.functional as F
import paddle.fluid as fluid


def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


def max_pool1D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False,
                             exclusive=False,
                             adaptive=False,
                             data_type=np.float64):
    N, C, L = x.shape
    if global_pool == 1:
        ksize = [L]
    if adaptive:
        L_out = ksize[0]
    else:
        L_out = (L - ksize[0] + 2 * paddings[0] + strides[0] - 1
                 ) // strides[0] + 1 if ceil_mode else (
                     L - ksize[0] + 2 * paddings[0]) // strides[0] + 1

    out = np.zeros((N, C, L_out))
    for i in range(L_out):
        if adaptive:
            r_start = adaptive_start_index(i, L, ksize[0])
            r_end = adaptive_end_index(i, L, ksize[0])
        else:
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L))
        x_masked = x[:, :, r_start:r_end]

        out[:, :, i] = np.max(x_masked, axis=(2))
    return out


C
cnn 已提交
66
class TestPool1D_API(unittest.TestCase):
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_adaptive_max_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = F.adaptive_max_pool1d(input, output_size=16)

            result_np = max_pool1D_forward_naive(
                input_np, ksize=[16], strides=[0], paddings=[0], adaptive=True)
            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
83
            ada_max_pool1d_dg = paddle.nn.layer.AdaptiveMaxPool1D(
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
                output_size=16)
            result = ada_max_pool1d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_adaptive_max_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
            result = F.adaptive_max_pool1d(input, output_size=16)

            input_np = np.random.random([2, 3, 32]).astype("float32")
            result_np = max_pool1D_forward_naive(
                input_np, ksize=[16], strides=[2], paddings=[0], adaptive=True)

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], result_np))

    def test_adaptive_max_pool1d(self):
        for place in self.places:
            self.check_adaptive_max_dygraph_results(place)
            self.check_adaptive_max_static_results(place)


109 110 111 112 113 114 115 116 117 118 119
class TestOutDtype(unittest.TestCase):
    def test_max_pool(self):
        api_fn = F.adaptive_max_pool1d
        shape = [1, 3, 32]
        check_out_dtype(
            api_fn,
            in_specs=[(shape, )],
            expect_dtypes=['float32', 'float64'],
            output_size=16)


120 121
if __name__ == '__main__':
    unittest.main()