recompute.py 19.8 KB
Newer Older
J
JZ-LIANG 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid import core
S
ShenLiang 已提交
17 18
from paddle.autograd import PyLayer, EagerPyLayer

J
JZ-LIANG 已提交
19 20
from paddle.fluid import framework
import contextlib
S
ShenLiang 已提交
21
from paddle.fluid.framework import in_dygraph_mode
J
JZ-LIANG 已提交
22 23

import logging
24 25 26 27 28 29
logger = logging.getLogger(__name__)
formatter = logging.Formatter(
    fmt='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
J
JZ-LIANG 已提交
30

31 32
__all__ = []

J
JZ-LIANG 已提交
33 34 35 36

def detach_variable(inputs):
    out = []
    for inp in inputs:
S
ShenLiang 已提交
37
        if not isinstance(inp, (core.eager.Tensor, core.VarBase)):
J
JZ-LIANG 已提交
38 39 40 41 42 43 44 45 46 47 48
            out.append(inp)
            continue

        x = inp.detach()
        x.stop_gradient = inp.stop_gradient
        out.append(x)
    return tuple(out)


def check_recompute_necessary(inputs):
    if not any(input_.stop_gradient == False for input_ in inputs
S
ShenLiang 已提交
49
               if isinstance(input_, (core.eager.Tensor, paddle.Tensor))):
50
        logger.warn(
J
JZ-LIANG 已提交
51 52 53 54 55
            "[Recompute]: None of the inputs to current recompute block need grad, "
            "therefore there is NO need to recompute this block in backward !")


@contextlib.contextmanager
56 57
def swith_rng_state_tracker(rng_state, tracker):
    from paddle.distributed.fleet.meta_parallel.parallel_layers.random import get_rng_state_tracker
J
JZ-LIANG 已提交
58
    orig_cuda_rng_state = paddle.get_cuda_rng_state()
59 60
    orig_cuda_rng_tracker = get_rng_state_tracker().get_states_tracker()

J
JZ-LIANG 已提交
61
    paddle.set_cuda_rng_state(rng_state)
62
    get_rng_state_tracker().set_states_tracker(tracker)
J
JZ-LIANG 已提交
63 64 65 66
    try:
        yield
    finally:
        paddle.set_cuda_rng_state(orig_cuda_rng_state)
67
        get_rng_state_tracker().set_states_tracker(orig_cuda_rng_tracker)
J
JZ-LIANG 已提交
68 69


S
ShenLiang 已提交
70 71 72
class EagerRecomputeFunction(EagerPyLayer):
    @staticmethod
    def forward(ctx, run_function, preserve_rng_state, *args):
73
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import get_rng_state_tracker
S
ShenLiang 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        if framework._dygraph_tracer()._has_grad:
            check_recompute_necessary(args)

        # store for recomputing 
        ctx.run_function = run_function
        ctx.preserve_rng_state = preserve_rng_state

        # NOTE the number of outputs of backward() should be equal to the number of tensors in forward()'s input
        # the order of tensors in backward()'s output should be the same as tensors in forward()'s input
        # None tensor inputs will be filtered in backward inputs.

        # save input for backward
        ctx.inputs = []
        ctx.tensor_indices = []
        tensor_inputs = []
        for i, arg in enumerate(args):
            if paddle.is_tensor(arg):
                tensor_inputs.append(arg)
                ctx.tensor_indices.append(i)
                ctx.inputs.append(None)
            else:
                ctx.inputs.append(arg)
        ctx.save_for_backward(*tensor_inputs)

        # NOTE recompute with restore RNG only support one senario where one process for one cuda gpu.
        # one process with multiple gpu and mix-gpu-cpu senarios are not support
        if ctx.preserve_rng_state:
            cur_device = paddle.get_device()
            if 'gpu:' not in cur_device:
                raise RuntimeError(
                    "Recompute with RNG perserve is not support current device: {}.".
                    format(cur_device))
            ctx.fw_cuda_rng_state = paddle.get_cuda_rng_state()
107 108
            ctx.fwd_cuda_rng_state_tracker = get_rng_state_tracker(
            ).get_states_tracker()
S
ShenLiang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

        # TODO support AMP
        tracer = framework._dygraph_tracer()
        ctx.is_fw_autocast = False if tracer._amp_level == core.AmpLevel.O0 else True
        if tracer._amp_level == core.AmpLevel.O2:
            ctx.amp_level = 'O2'
        elif tracer._amp_level in (core.AmpLevel.O1, core.AmpLevel.O0):
            ctx.amp_level = 'O1'
        else:
            raise ValueError("unsupported amp level: {}".format(
                tracer._amp_level))

        if tracer._amp_dtype == 'float16':
            ctx.amp_dtype = 'float16'
        elif tracer._amp_dtype in ('bfloat16', 'float32'):
            ctx.amp_dtype = 'bfloat16'
        else:
            raise ValueError("unsupported amp dtype: {}".format(
                tracer._amp_dtype))

        ctx.amp_white_list, ctx.amp_black_list = tracer._get_amp_op_list()

        with paddle.no_grad():
            outputs = run_function(*args)
        return outputs

    @staticmethod
    def backward(ctx, *args):
137
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import get_rng_state_tracker
S
ShenLiang 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        with paddle.fluid.dygraph.guard():
            # TODO need to check the recompute calling is vaild or not

            # Restore inputs
            inputs = list(ctx.inputs)
            tensor_indices = ctx.tensor_indices
            tensors = ctx.saved_tensor()
            for i, idx in enumerate(tensor_indices):
                inputs[idx] = tensors[i]

            # paddle.enable_grad()
            tracer = framework._dygraph_tracer()
            tracer._has_grad = True

            # NOTE support AMP
            # need restore auto_cast state as well as w/b list
            if ctx.preserve_rng_state:
155 156
                with swith_rng_state_tracker(ctx.fw_cuda_rng_state,
                                             ctx.fwd_cuda_rng_state_tracker):
S
ShenLiang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
                    with paddle.amp.auto_cast(
                            enable=ctx.is_fw_autocast,
                            custom_white_list=ctx.amp_white_list,
                            custom_black_list=ctx.amp_black_list,
                            level=ctx.amp_level,
                            dtype=ctx.amp_dtype):
                        detached_inputs = detach_variable(tuple(inputs))
                        outputs = ctx.run_function(*detached_inputs)
            else:
                with paddle.amp.auto_cast(
                        enable=ctx.is_fw_autocast,
                        custom_white_list=ctx.amp_white_list,
                        custom_black_list=ctx.amp_black_list,
                        level=ctx.amp_level,
                        dtype=ctx.amp_dtype):
                    detached_inputs = detach_variable(tuple(inputs))
                    outputs = ctx.run_function(*detached_inputs)

            if isinstance(outputs, core.eager.Tensor):
                outputs = (outputs, )
            assert len(outputs) == len(args)

            # run backward() with only tensor that requires grad
            forward_outputs_with_grad = []
            # NOTE In Transformer-like network, if user put the attention mask into the recompute segment output,
            # pylayer will force the stop_gradient of attention mask to be False, which will make the number of 
            # tensor that need grad does not match.
            # the following backward_inputs_with_grad is used to avoid this case.
            backward_inputs_with_grad = []
            for i in range(len(outputs)):
                if isinstance(
                        outputs[i],
                        core.eager.Tensor) and not outputs[i].stop_gradient:
                    forward_outputs_with_grad.append(outputs[i])
                    backward_inputs_with_grad.append(args[i])

            if len(forward_outputs_with_grad) == 0:
                raise RuntimeError(
                    "none of output has requires_grad=True, this recompute() is not necessary"
                )

            # actually backward
            with paddle.amp.auto_cast(enable=False):
                paddle.autograd.backward(forward_outputs_with_grad,
                                         backward_inputs_with_grad)

            grads = tuple(
                inp.grad for inp in detached_inputs
                if isinstance(inp, core.eager.Tensor))
            return grads


J
JZ-LIANG 已提交
209 210 211
class RecomputeFunction(PyLayer):
    @staticmethod
    def forward(ctx, run_function, preserve_rng_state, *args):
212
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import get_rng_state_tracker
213 214
        if framework._dygraph_tracer()._has_grad:
            check_recompute_necessary(args)
J
JZ-LIANG 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

        # store for recomputing 
        ctx.run_function = run_function
        ctx.preserve_rng_state = preserve_rng_state

        # NOTE the number of outputs of backward() should be equal to the number of tensors in forward()'s input
        # the order of tensors in backward()'s output should be the same as tensors in forward()'s input
        # None tensor inputs will be filtered in backward inputs.

        # save input for backward
        ctx.inputs = []
        ctx.tensor_indices = []
        tensor_inputs = []
        for i, arg in enumerate(args):
            if paddle.is_tensor(arg):
                tensor_inputs.append(arg)
                ctx.tensor_indices.append(i)
                ctx.inputs.append(None)
            else:
                ctx.inputs.append(arg)
        ctx.save_for_backward(*tensor_inputs)

        # NOTE recompute with restore RNG only support one senario where one process for one cuda gpu.
        # one process with multiple gpu and mix-gpu-cpu senarios are not support
        if ctx.preserve_rng_state:
            cur_device = paddle.get_device()
            if 'gpu:' not in cur_device:
                raise RuntimeError(
                    "Recompute with RNG perserve is not support current device: {}.".
                    format(cur_device))
            ctx.fw_cuda_rng_state = paddle.get_cuda_rng_state()
246 247
            ctx.fwd_cuda_rng_state_tracker = get_rng_state_tracker(
            ).get_states_tracker()
J
JZ-LIANG 已提交
248 249

        # TODO support AMP
250
        tracer = framework._dygraph_tracer()
251 252 253 254 255
        ctx.is_fw_autocast = False if tracer._amp_level == core.AmpLevel.O0 else True
        if tracer._amp_level == core.AmpLevel.O2:
            ctx.amp_level = 'O2'
        elif tracer._amp_level in (core.AmpLevel.O1, core.AmpLevel.O0):
            ctx.amp_level = 'O1'
256
        else:
257 258
            raise ValueError("unsupported amp level: {}".format(
                tracer._amp_level))
259 260 261 262 263 264 265 266 267

        if tracer._amp_dtype == 'float16':
            ctx.amp_dtype = 'float16'
        elif tracer._amp_dtype in ('bfloat16', 'float32'):
            ctx.amp_dtype = 'bfloat16'
        else:
            raise ValueError("unsupported amp dtype: {}".format(
                tracer._amp_dtype))

268
        ctx.amp_white_list, ctx.amp_black_list = tracer._get_amp_op_list()
J
JZ-LIANG 已提交
269 270 271 272 273 274 275

        with paddle.no_grad():
            outputs = run_function(*args)
        return outputs

    @staticmethod
    def backward(ctx, *args):
276
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import get_rng_state_tracker
J
JZ-LIANG 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290
        with paddle.fluid.dygraph.guard():
            # TODO need to check the recompute calling is vaild or not

            # Restore inputs
            inputs = list(ctx.inputs)
            tensor_indices = ctx.tensor_indices
            tensors = ctx.saved_tensor()
            for i, idx in enumerate(tensor_indices):
                inputs[idx] = tensors[i]

            # paddle.enable_grad()
            tracer = framework._dygraph_tracer()
            tracer._has_grad = True

291 292
            # NOTE support AMP
            # need restore auto_cast state as well as w/b list
J
JZ-LIANG 已提交
293
            if ctx.preserve_rng_state:
294 295
                with swith_rng_state_tracker(ctx.fw_cuda_rng_state,
                                             ctx.fwd_cuda_rng_state_tracker):
296 297 298
                    with paddle.amp.auto_cast(
                            enable=ctx.is_fw_autocast,
                            custom_white_list=ctx.amp_white_list,
299
                            custom_black_list=ctx.amp_black_list,
300 301
                            level=ctx.amp_level,
                            dtype=ctx.amp_dtype):
302 303 304 305 306 307
                        detached_inputs = detach_variable(tuple(inputs))
                        outputs = ctx.run_function(*detached_inputs)
            else:
                with paddle.amp.auto_cast(
                        enable=ctx.is_fw_autocast,
                        custom_white_list=ctx.amp_white_list,
308
                        custom_black_list=ctx.amp_black_list,
309 310
                        level=ctx.amp_level,
                        dtype=ctx.amp_dtype):
J
JZ-LIANG 已提交
311 312 313 314 315 316 317 318 319
                    detached_inputs = detach_variable(tuple(inputs))
                    outputs = ctx.run_function(*detached_inputs)

            if isinstance(outputs, core.VarBase):
                outputs = (outputs, )
            assert len(outputs) == len(args)

            # run backward() with only tensor that requires grad
            forward_outputs_with_grad = []
320 321 322 323 324
            # NOTE In Transformer-like network, if user put the attention mask into the recompute segment output,
            # pylayer will force the stop_gradient of attention mask to be False, which will make the number of 
            # tensor that need grad does not match.
            # the following backward_inputs_with_grad is used to avoid this case.
            backward_inputs_with_grad = []
J
JZ-LIANG 已提交
325 326 327 328
            for i in range(len(outputs)):
                if isinstance(outputs[i],
                              core.VarBase) and not outputs[i].stop_gradient:
                    forward_outputs_with_grad.append(outputs[i])
329 330
                    backward_inputs_with_grad.append(args[i])

J
JZ-LIANG 已提交
331 332 333 334 335
            if len(forward_outputs_with_grad) == 0:
                raise RuntimeError(
                    "none of output has requires_grad=True, this recompute() is not necessary"
                )

336 337 338 339
            # actually backward
            with paddle.amp.auto_cast(enable=False):
                paddle.autograd.backward(forward_outputs_with_grad,
                                         backward_inputs_with_grad)
J
JZ-LIANG 已提交
340 341 342 343 344 345 346 347 348 349

            grads = list(inp._grad_ivar() for inp in detached_inputs
                         if isinstance(inp, core.VarBase))
            return grads


def recompute(function, *args, **kwargs):
    """
    recompute intermediate activations to save then memory.

350 351 352 353 354 355 356 357 358
    Parameters:
        function(paddle.nn.Sequential): layer of sequence of layers that describes part of forward pass of the model  
              whose intermediate activations will be released to save memory in forward stage and will be recomputed 
              in backward stage for gradient calculation. 
        *args(Tensor): inputs to the function.    
        **kwargs(Dict): Kwargs should only contain the key-value pair of preserve_rng_state, which is used to 
              indicate whether to save the forward rng. If it is True, then the last forward rng value will be 
              restored when the forward recalculation of backpropagation is performed. The default 
              preserve_rng_state is True.
J
JZ-LIANG 已提交
359 360

    Returns:
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
        Output of function on args.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed.fleet.utils import recompute
            import random

            # required: gpu

            def get_fc_block(block_idx, input_size, is_last=False):
                block_name = "block_" + str(block_idx)
                block = paddle.nn.Sequential(
                    (block_name + "_fc_0", paddle.nn.Linear(input_size, input_size, bias_attr=False)),
                    (block_name + "_dropout", paddle.nn.Dropout(p=0.5)),
                    (block_name + "_relu_1", paddle.nn.ReLU()),
                    (block_name + "_fc_1", paddle.nn.Linear(input_size, input_size, bias_attr=False)),
                    (block_name + "_relu_2", paddle.nn.ReLU()),
                )
                if is_last:
                    block.add_sublayer(
                        block_name + "_fc_2",
                        paddle.nn.Linear(
                            input_size, 1, bias_attr=False
                        )
                    )
                else:
                    block.add_sublayer(
                        block_name + "_fc_2",
                        paddle.nn.Linear(input_size, input_size, bias_attr=False)
                    )

                return block


            class Naive_fc_net(paddle.nn.Layer):
                def __init__(self, input_size=10,
                            recompute_blocks=[1, 3],
                            recompute_kwargs={}):
                    super(Naive_fc_net, self).__init__()
                    self.recompute_blocks = recompute_blocks
                    self.recompute_kwargs = recompute_kwargs
                    self.runfunc0 = get_fc_block(0, input_size, is_last=False)
                    self.runfunc1 = get_fc_block(1, input_size, is_last=False)
                    self.runfunc2 = get_fc_block(2, input_size, is_last=False)
                    self.runfunc3 = get_fc_block(3, input_size, is_last=False)
                    self.runfunc4 = get_fc_block(4, input_size, is_last=True)
                    self.total_func = [self.runfunc0, self.runfunc1, self.runfunc2, self.runfunc3, self.runfunc4]

                def forward(self, inputs):
                    nums = len(self.total_func)
                    for i in range(nums):
                        if i in self.recompute_blocks:
                            inputs = recompute(self.total_func[i], inputs, **{"preserve_rng_state": True})
                        else:
                            inputs = self.total_func[i](inputs)
                    return inputs

            def run_model(cuda_state, recompute_block=[], recompute_kwargs={}):
                gen = paddle.seed(10)
                gen.manual_seed(10)
                np.random.seed(10)
                random.seed(10)
                if cuda_state:
                    paddle.set_cuda_rng_state(cuda_state)

                batch_size, input_size = 1, 10
                model = Naive_fc_net(
                    input_size,
                    recompute_blocks=recompute_block,
                    recompute_kwargs=recompute_kwargs)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                loss_ = []
                param_ = []
                grad_ = []
                for _ in range(5):
                    x_data = np.random.randn(batch_size, input_size).astype(np.float32)
                    x = paddle.to_tensor(x_data)
                    y_pred = model(x)
                    loss = y_pred.mean()
                    loss_.append(np.asarray(loss).tolist())
                    loss.backward()
                    optimizer.step()
                    param_.append(np.asarray(model.parameters()[9]).tolist())
                    grad_.append(np.asarray(model.parameters()[3]._grad_ivar()).tolist())
                    optimizer.clear_grad()

                return loss_, param_, grad_

            cuda_state = paddle.get_cuda_rng_state()
            # without recompute
            loss_ref, param_ref, grad_ref = run_model(
                cuda_state, recompute_block=[]
            )

            loss, param, grad = run_model(cuda_state, recompute_block=[1, 2])
            print("normal_loss: {}, recompute_loss: {}".format(loss_ref, loss))
            # The result of the recompute_loss should be the same as the normal_loss.

J
JZ-LIANG 已提交
462 463 464 465 466 467 468
    """
    # Hack to mix *args with **kwargs in a python 2.7-compliant way
    preserve = kwargs.pop('preserve_rng_state', True)
    if kwargs:
        raise ValueError("Unexpected keyword arguments: " + ",".join(
            arg for arg in kwargs))

S
ShenLiang 已提交
469 470 471 472
    if in_dygraph_mode():
        return EagerRecomputeFunction.apply(function, preserve, *args)
    else:
        return RecomputeFunction.apply(function, preserve, *args)