tensor.py 5.7 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8
from ..layer_helper import LayerHelper

__all__ = [
    'create_tensor', 'cast', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'ones', 'zeros'
]


9
def create_tensor(dtype, name=None):
Y
Yu Yang 已提交
10 11 12 13
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)


14
def cast(x, dtype):
Y
Yu Yang 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


30
def concat(input, axis=0):
Y
Yu Yang 已提交
31
    """
32 33 34
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
35
    and returns that as the output.
36 37 38 39 40 41 42 43 44 45 46

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
47 48 49 50 51 52 53 54 55 56 57
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


58
def sums(input, out=None):
Y
Yu Yang 已提交
59 60 61 62 63 64 65 66 67 68 69
    """
    This function takes in the input and performs the sum operation on it
    and returns that as the output.
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


70
def assign(input, output):
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
        input(Variable): The source variable
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
89 90 91 92 93 94 95 96 97
    helper = LayerHelper('assign', **locals())
    helper.append_op(
        type='scale',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs={'scale': 1.0})
    return output


98
def fill_constant(shape, dtype, value, out=None):
Y
Yu Yang 已提交
99
    """
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    **fill_constant**

    This function creates a tensor of specified *shape* and 
    *dtype*, and initializes this with a constant supplied in *value*.
    
    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        out(Variable): Output Variable to initialize

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    """
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
        attrs={'shape': shape,
               'dtype': out.dtype,
               'value': float(value)})
    out.stop_gradient = True
    return out


def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
140
                                  output_dim_idx=0):
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    """
    **fill_constant_batch_size_like**

    This function creates a tensor of specified *shape*, *dtype* and batch size, 
    and initializes this with a constant supplied in *value*. The batch size is 
    obtained from the `input` tensor. 

    It also sets *stop_gradient* to True.

    Args:
        input(Variable): Tensor whose dimensions will be used to get batch size
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        input_dim_idx(int): Index of input's batch size dimension
        output_dim_idx(int): Index of output's batch size dimension

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
    """
Y
Yu Yang 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


183
def ones(shape, dtype):
Y
Yu Yang 已提交
184 185 186 187 188 189 190
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 1.0.
    """
    return fill_constant(value=1.0, **locals())


191
def zeros(shape, dtype):
Y
Yu Yang 已提交
192 193 194 195 196
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 0.0.
    """
    return fill_constant(value=0.0, **locals())