fusion_gru_op.cc 18.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_gru_op.h"
T
tensor-tang 已提交
16
#include <cstring>  // for memcpy
T
tensor-tang 已提交
17
#include <string>
T
tensor-tang 已提交
18
#include "paddle/fluid/framework/shape_runtime_infer.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
24 25 26 27 28

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  auto* runtime_ctx = dynamic_cast<framework::RuntimeInferShapeContext*>(ctx);
  if (runtime_ctx == nullptr) {
    LOG(FATAL) << "Should have runtime infer context";
  }
  const auto& ins = runtime_ctx->OpBase().Inputs();
  const auto& outs = runtime_ctx->OpBase().Outputs();
  const auto& scope = runtime_ctx->InferScope();
  const auto ins_end = ins.end();
  const auto outs_end = outs.end();
  auto fair_input = [&](const std::string& name) -> bool {
    auto it = ins.find(name);
    if (it == ins_end) {
      return false;
    }
    const auto& in = it->second;
    if (in.size() != 1 || in[0] == framework::kEmptyVarName) {
      return false;
    }
    return scope.FindVar(in[0]) != nullptr;
  };
  auto fair_output = [&](const std::string& name) -> bool {
    auto it = outs.find(name);
    if (it == outs_end) {
      return false;
    }
    const auto& out = it->second;
    if (out.size() != 1 || out[0] == framework::kEmptyVarName) {
      return false;
    }
    return scope.FindVar(out[0]) != nullptr;
  };

  PADDLE_ENFORCE(fair_input("X"), "Assert only one Input(X) of GRU.");
  PADDLE_ENFORCE(fair_input("WeightX"),
                 "Assert only one Input(WeightX) of GRU.");
  PADDLE_ENFORCE(fair_input("WeightH"),
                 "Assert only one Input(WeightH) of GRU.");
  PADDLE_ENFORCE(fair_output("XX"), "Assert only one Output(XX) of GRU.");
  PADDLE_ENFORCE(fair_output("Hidden"),
                 "Assert only one Output(Hidden) of GRU.");
T
tensor-tang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
                    "should be %d.",
                    frame_size);
  PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
                    "The second dimension of Input(WeightH) "
                    "should be 3 * %d.",
                    frame_size);

T
tensor-tang 已提交
94
  if (fair_input("H0")) {
T
tensor-tang 已提交
95 96 97 98
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                      "The width of H0 must be equal to frame_size.");
  }
T
tensor-tang 已提交
99
  if (fair_input("Bias")) {
T
tensor-tang 已提交
100 101 102 103 104
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
    PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
T
tensor-tang 已提交
105 106
                      "The shape of Bias must be [1, frame_size * 3].");
  }
T
tensor-tang 已提交
107 108 109
  framework::DDim out_dims({x_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
110
  int xx_width;
T
tensor-tang 已提交
111
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
112 113 114
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
T
tensor-tang 已提交
115 116 117 118 119 120
    PADDLE_ENFORCE(fair_output("ReorderedH0"),
                   "Assert only one Output(ReorderedH0) of GRU.");
    PADDLE_ENFORCE(fair_output("BatchedInput"),
                   "Assert only one Output(BatchedInput) of GRU.");
    PADDLE_ENFORCE(fair_output("BatchedOut"),
                   "Assert only one Output(BatchedOut) of GRU.");
T
tensor-tang 已提交
121 122
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
123
  }
T
tensor-tang 已提交
124 125
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
126 127 128 129 130 131 132 133 134 135
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
136 137
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
138
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
139 140
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
141 142 143 144 145
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
146 147 148 149
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
150 151 152 153 154
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
155
  AddInput("Bias",
T
tensor-tang 已提交
156 157 158
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
159
      .AsDispensable();
T
tensor-tang 已提交
160 161
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
162
  AddOutput("XX",
T
tensor-tang 已提交
163
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
164 165 166
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
167
      .AsIntermediate();
T
tensor-tang 已提交
168 169 170 171
  AddOutput("BatchedInput",
            "(LoDTensor) This is the batched result of input X"
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
T
tensor-tang 已提交
172
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
173
      .AsIntermediate();
T
tensor-tang 已提交
174
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
188 189 190 191
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
T
tensor-tang 已提交
192 193 194 195 196 197 198
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
199
template <typename T>
T
tensor-tang 已提交
200 201
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
202
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
203
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

#define INIT_VEC_FUNC                                                     \
  std::function<void(const int, const T *, T *)> act_gate, act_state;     \
  std::function<void(const int, const T*, const T*, const T*, T*)> cross; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");          \
  auto& act_state_str = ctx.Attr<std::string>("activation");              \
  if (platform::jit::MayIUse(platform::jit::avx)) {                       \
    math::VecActivations<T, platform::jit::avx> act_functor;              \
    act_gate = act_functor(act_gate_str);                                 \
    act_state = act_functor(act_state_str);                               \
    cross = math::vec_cross<T, platform::jit::avx>;                       \
  } else {                                                                \
    math::VecActivations<T, platform::jit::isa_any> act_functor;          \
    act_gate = act_functor(act_gate_str);                                 \
    act_state = act_functor(act_state_str);                               \
    cross = math::vec_cross<T, platform::jit::isa_any>;                   \
  }

T
tensor-tang 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
#define INIT_BASE_INPUT_OUTPUT                        \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  bool is_reverse = ctx.Attr<bool>("is_reverse");

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 3D*/ \
  const int total_T = x_dims[0];         \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D3 = wh_dims[1];             \
  const int D2 = D * 2;

T
tensor-tang 已提交
245 246 247
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
248 249
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
T
tensor-tang 已提交
250 251 252 253 254
    INIT_VEC_FUNC

    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
255
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
256 257 258 259 260 261 262 263
    const T* wx_data = wx->data<T>();
    const T* wh_data = wh->data<T>();
    const T* wh_state_data = wh_data + D * D2;
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());

    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
T
tensor-tang 已提交
264 265
                                      xx_data,
                                      bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
283
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
        // W: {W_update, W_reset; W_state}
        // update gate
        act_gate(D, xx_data, xx_data);
        // state gate
        act_state(D, xx_data + D2, xx_data + D2);
        // out = a*b
        blas.VMUL(D, xx_data, xx_data + D2, hidden_out_data);
        // save prev
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D2, D, static_cast<T>(1),
                  prev_hidden_data, D, wh_data, D2, static_cast<T>(1), xx_data,
                  D3);
        act_gate(D2, xx_data, xx_data);
        // rt = rt*ht_1 inplace result
        blas.VMUL(D, prev_hidden_data, xx_data + D, hidden_out_data);

        // gemm rt * Ws
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
                  hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
                  xx_data + D2, D3);
        act_state(D, xx_data + D2, xx_data + D2);
        // out = zt*ht~ + (1-zt)*ht_1
        cross(D, xx_data, xx_data + D2, prev_hidden_data, hidden_out_data);
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
324
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
325
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
326 327 328 329 330 331 332
    if (x->lod()[0].size() == 2) {
      SeqCompute(ctx);
      return;
    }
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
333

T
tensor-tang 已提交
334 335 336
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
337

T
tensor-tang 已提交
338 339 340
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
    const T* wh_data = wh->data<T>();
T
tensor-tang 已提交
341 342 343 344 345
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* batched_input_data = batched_input->mutable_data<T>(ctx.GetPlace());
    T* batched_out_data = batched_out->mutable_data<T>(ctx.GetPlace());
    hidden_out->mutable_data<T>(ctx.GetPlace());

T
tensor-tang 已提交
346 347 348
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
349 350 351 352
    if (M > D3) {
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
                                        xx_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
353
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
354 355
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
356
      batched_input->set_lod(xx->lod());
T
tensor-tang 已提交
357 358 359
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, xx_data, wx_data,
                                        batched_input_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
360 361
    }

T
tensor-tang 已提交
362 363 364 365
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
366

T
tensor-tang 已提交
367
    int tstart = 0;
T
tensor-tang 已提交
368
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
369
    if (h0) {
T
tensor-tang 已提交
370 371 372 373 374 375 376 377 378
      // reorder h0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(ctx.GetPlace());
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
379
    } else {
T
tensor-tang 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
        // update gate
        act_gate(D, cur_in_data, cur_in_data);
        // state gate
        act_state(D, cur_in_data + D2, cur_in_data + D2);
        // out = a*b
        blas.VMUL(D, cur_in_data, cur_in_data + D2, cur_out_data);
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
397
    }
T
tensor-tang 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast<T>(1),
                prev_hidden_data, D, wh_data, D2, static_cast<T>(1),
                batched_input_data, D3);

      T* cur_batched_data = batched_input_data;
412
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
413 414 415 416
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
        act_gate(D2, cur_batched_data, cur_batched_data);
        // rt = rt*ht_1 inplace result
417
        blas.VMUL(D, cur_prev_hidden_data, cur_batched_data + D, cur_out_data);
T
tensor-tang 已提交
418 419 420

        cur_batched_data += D3;
        cur_prev_hidden_data += D;
421
        cur_out_data += D;
T
tensor-tang 已提交
422 423
      }

T
tensor-tang 已提交
424
      cur_batched_data = batched_input_data;
425
      cur_out_data = batched_out_data;
T
tensor-tang 已提交
426
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast<T>(1),
427
                cur_out_data, D, wh_state_data, D, static_cast<T>(1),
T
tensor-tang 已提交
428 429 430 431 432 433
                cur_batched_data + D2, D3);

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
        // ht~ = act_state(...)
        act_state(D, cur_batched_data + D2, cur_batched_data + D2);
T
tensor-tang 已提交
434 435 436
        // out = zt*ht~ + (1-zt)*ht_1
        cross(D, cur_batched_data, cur_batched_data + D2, cur_prev_hidden_data,
              cur_out_data);
T
tensor-tang 已提交
437 438 439 440

        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
441
      }
T
tensor-tang 已提交
442 443 444
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
445
    }
T
tensor-tang 已提交
446

T
tensor-tang 已提交
447
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
448 449
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
450
  }
T
tensor-tang 已提交
451
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
452 453
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
T
tensor-tang 已提交
454 455 456 457 458 459 460 461
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
T
tensor-tang 已提交
462 463
REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel<float>,
                       ops::FusionGRUKernel<double>);