gpu_context.cc 24.2 KB
Newer Older
W
Wilber 已提交
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Corporation. All rights reserved.
W
Wilber 已提交
3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
15

16
#include "paddle/phi/backends/gpu/gpu_context.h"
X
xiaoxiaohehe001 已提交
17

W
Wilber 已提交
18
#include <algorithm>
W
Wilber 已提交
19 20 21 22 23 24
#include <array>
#include <functional>
#include <future>
#include <memory>
#include <mutex>

X
xiaoxiaohehe001 已提交
25
#include "glog/logging.h"
26 27 28
#include "paddle/phi/api/ext/exception.h"
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
X
xiaoxiaohehe001 已提交
29
#include "paddle/phi/backends/gpu/gpu_resources.h"
30 31 32
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/allocator.h"
W
Wilber 已提交
33 34

#ifdef PADDLE_WITH_CUDA
35 36 37 38
#include "paddle/phi/backends/dynload/cublas.h"
#include "paddle/phi/backends/dynload/cudnn.h"
#include "paddle/phi/backends/dynload/cusolver.h"
#include "paddle/phi/backends/dynload/cusparse.h"
W
Wilber 已提交
39
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
40
#include "paddle/phi/backends/dynload/nccl.h"
W
Wilber 已提交
41 42 43 44
#endif  // !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
#endif  // PADDLE_WITH_CUDA

#ifdef PADDLE_WITH_HIP
45 46
#include "paddle/phi/backends/dynload/miopen.h"
#include "paddle/phi/backends/dynload/rocblas.h"
W
Wilber 已提交
47
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
48
#include "paddle/phi/backends/dynload/rccl.h"
W
Wilber 已提交
49 50 51 52 53 54 55
#endif  // !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#endif  // PADDLE_WITH_HIP

// NOTE: The paddle framework should add WITH_EIGEN option to support compile
// without eigen.
#include "unsupported/Eigen/CXX11/Tensor"

56
// TODO(phi): remove fluid header.
W
Wilber 已提交
57 58
#include "paddle/fluid/platform/enforce.h"

59
namespace phi {
W
Wilber 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

namespace internal {

class EigenGpuStreamDevice : public Eigen::StreamInterface {
 public:
  EigenGpuStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenGpuStreamDevice() override {}

  void Reinitialize(gpuStream_t cuda_stream,
                    Allocator* allocator,
                    GPUPlace place) {
    stream_ = cuda_stream;
    place_ = place;
    allocator_ = allocator;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const gpuStream_t& stream() const override { return stream_; }

  const gpuDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
    auto buf = allocator_->Allocate(num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << " requested "
            << num_bytes;
    void* retv = buf->ptr();
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
    return retv;
  }

  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_GPU_SUCCESS(
          hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), stream_));
#else
      PADDLE_ENFORCE_GPU_SUCCESS(
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), stream_));
#endif
    }
    return semaphore_;
  }

 private:
  GPUPlace place_;
  gpuStream_t stream_;                // not owned;
  Allocator* allocator_;              // not owned;
  const gpuDeviceProp* device_prop_;  // not owned;
  mutable void* scratch_;
  mutable unsigned int* semaphore_;
  mutable std::mutex mtx_;  // to protect allocations_
  mutable std::unordered_map<void*, Allocator::AllocationPtr> allocations_;
};

#ifdef PADDLE_WITH_HIP
static void StreamCallbackFunc(gpuStream_t stream,
                               gpuError_t status,
                               void* user_data)
#endif
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10000
    static void CUDART_CB StreamCallbackFunc(void* user_data)
#else
    static void CUDART_CB
    StreamCallbackFunc(cudaStream_t stream, cudaError_t status, void* user_data)
#endif
#endif
{
  std::unique_ptr<std::function<void()>> func(
      reinterpret_cast<std::function<void()>*>(user_data));
  (*func)();
}

}  // namespace internal

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
void DnnWorkspaceHandle::RunFuncSync(
    const std::function<void(void*)>& cudnn_func,
    size_t required_workspace_bytes,
    bool use_cached_allocation) {
  bool need_realloc = required_workspace_bytes > WorkspaceSize();
  if (need_realloc && !use_cached_allocation) {
    void* workspace_ptr = nullptr;
    size_t size = ((required_workspace_bytes + 255) >> 8) << 8;
    std::lock_guard<std::mutex> guard(*mtx_);
#ifdef PADDLE_WITH_HIP
    auto status = hipMalloc(&workspace_ptr, size);
#else
    auto status = cudaMalloc(&workspace_ptr, size);
#endif
    if (status == gpuSuccess) {
      cudnn_func(workspace_ptr);
      phi::backends::gpu::GpuStreamSync(stream_);
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_GPU_SUCCESS(hipFree(workspace_ptr));
#else
      PADDLE_ENFORCE_GPU_SUCCESS(cudaFree(workspace_ptr));
#endif
      return;
    }
  }

  RunFunc(cudnn_func, required_workspace_bytes);
  if (need_realloc) {
    // Release the workspace allocated in this running.
    ResetWorkspace();
  }
}

W
Wilber 已提交
194
void DnnWorkspaceHandle::ResetWorkspace() { allocation_ = nullptr; }
W
Wilber 已提交
195

W
Wilber 已提交
196 197 198 199 200 201
void DnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) return;
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = allocator_->Allocate(required_workspace_bytes);
}
W
Wilber 已提交
202 203 204 205 206

struct GPUContext::Impl {
  void Init() {
    owned_ = true;
    backends::gpu::GPUDeviceGuard guard(place_.device);
X
xiaoxiaohehe001 已提交
207 208 209 210 211 212 213 214 215
    phi::InitGpuProperties(place_,
                           &compute_capability_,
                           &runtime_version_,
                           &driver_version_,
                           &multi_process_,
                           &max_threads_per_mp_,
                           &max_threads_per_block_,
                           &max_grid_dim_size_);
    phi::InitStream(&stream_);
W
Wilber 已提交
216 217 218 219 220 221 222
    InitEigenDevice();
    InitDnnWorkspace();
  }

  void PartialInitWithoutAllocator() {
    owned_ = true;
    backends::gpu::GPUDeviceGuard guard(place_.device);
X
xiaoxiaohehe001 已提交
223 224 225 226 227 228 229 230 231
    phi::InitGpuProperties(place_,
                           &compute_capability_,
                           &runtime_version_,
                           &driver_version_,
                           &multi_process_,
                           &max_threads_per_mp_,
                           &max_threads_per_block_,
                           &max_grid_dim_size_);
    phi::InitStream(&stream_);
W
Wilber 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
  }

  void PartialInitWithAllocator() {
    owned_ = true;
    backends::gpu::GPUDeviceGuard guard(place_.device);
    InitEigenDevice();
    InitDnnWorkspace();
  }

  Impl() : place_(GPUPlace()) {}

  explicit Impl(const GPUPlace& place) : place_(place) {}

  ~Impl() {
    backends::gpu::GPUDeviceGuard guard(place_.device);
X
xiaoxiaohehe001 已提交
247 248 249 250 251 252
    if (owned_) {
      DestoryInternalWorkspace();
      DestoryInternalEigenDevice();
      phi::DestroySparseHandle(sparse_handle_);
      phi::DestroySolverHandle(solver_handle_);
      phi::DestroyDnnHandle(dnn_handle_);
W
Wilber 已提交
253
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
X
xiaoxiaohehe001 已提交
254 255 256
      if (nccl_comm_) {
        PADDLE_ENFORCE_GPU_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
      }
W
Wilber 已提交
257
#endif
X
xiaoxiaohehe001 已提交
258 259 260 261 262 263
      phi::DestroyBlasHandle(blas_handle_);
      phi::DestroyBlasHandle(blas_tensor_core_handle_);
      phi::DestroyBlasHandle(blas_tf32_tensor_core_handle_);
      phi::DestroyBlasLtHandle(blaslt_handle_);
      phi::DestoryStream(stream_);
    }
W
Wilber 已提交
264 265 266 267 268 269 270 271 272 273 274
  }

  const Place& GetPlace() const { return place_; }

  bool IsTensorCoreAvailable() const {
    return blas_tensor_core_handle_ != nullptr;
  }

  void InitDnnWorkspace() {
    PD_CHECK(allocator_ != nullptr,
             "the device allocator for gpu context is nullptr.");
275
    workspace_ = new DnnWorkspaceHandle(allocator_, stream_);
W
Wilber 已提交
276 277 278 279 280
  }

  void DestoryInternalWorkspace() {
    if (owned_ && workspace_ != nullptr) {
      delete workspace_;
281
      workspace_ = nullptr;
W
Wilber 已提交
282 283 284
    }
  }

W
Wilber 已提交
285 286 287 288 289 290 291 292
  // TODO(wilber): The return type is a pointer, to be modified later.
  // DnnWorkspaceHandle* GetDnnWorkspace() {
  //   PD_CHECK(workspace_ != nullptr, "the gpu cudnn workspace is nullptr.");
  //   return workspace_;
  // }
  DnnWorkspaceHandle GetDnnWorkspace() {
    PD_CHECK(allocator_ != nullptr,
             "the device allocator for gpu context is nullptr.");
293
    return DnnWorkspaceHandle(allocator_, stream_);
W
Wilber 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
  }

  void SetStream(gpuStream_t stream) { stream_ = stream; }

  gpuStream_t GetStream() const {
    PD_CHECK(stream_ != nullptr, "the gpu stream is nullptr.");
    return stream_;
  }

  void InitEigenDevice() {
    PD_CHECK(allocator_ != nullptr,
             "the allocator for eigen device is nullptr.");
    eigen_stream_.reset(new internal::EigenGpuStreamDevice());
    eigen_stream_->Reinitialize(stream_, allocator_, place_);
    eigen_device_ = new Eigen::GpuDevice(eigen_stream_.get());
  }

  void DestoryInternalEigenDevice() {
    if (owned_ && eigen_device_ != nullptr) {
      delete eigen_device_;
      eigen_device_ = nullptr;
    }
  }

  void SetEigenDevice(Eigen::GpuDevice* device) { eigen_device_ = device; }

  Eigen::GpuDevice* eigen_device() const {
    PD_CHECK(eigen_device_ != nullptr, "the gpu eigen_device is nullptr.");
    return eigen_device_;
  }

X
xiaoxiaohehe001 已提交
325 326 327 328 329 330
  blasHandle_t GetBlasHandle() {
    std::call_once(flag_blas_, [=]() {
      if (!blas_handle_) {
        phi::InitBlasHandle(&blas_handle_, stream_);
      }
#ifdef PADDLE_WITH_CUDA
W
Wilber 已提交
331
#if CUDA_VERSION >= 9000
X
xiaoxiaohehe001 已提交
332 333 334 335 336 337
      if (!blas_tensor_core_handle_) {
        phi::InitBlasHandle(&blas_tensor_core_handle_, stream_);
        PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode(
            blas_tensor_core_handle_, CUBLAS_TENSOR_OP_MATH));
      }
#endif
W
Wilber 已提交
338
#if CUDA_VERSION >= 11000
X
xiaoxiaohehe001 已提交
339 340 341 342 343 344 345 346
      if (!blas_tf32_tensor_core_handle_) {
        phi::InitBlasHandle(&blas_tf32_tensor_core_handle_, stream_);
        PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode(
            blas_tf32_tensor_core_handle_, CUBLAS_TF32_TENSOR_OP_MATH));
      }
#endif
#endif
    });
W
Wilber 已提交
347 348 349 350 351 352
    PD_CHECK(blas_handle_ != nullptr, "the gpu blas handle is nullptr.");
    return blas_handle_;
  }

  void SetBlasHandle(blasHandle_t blas) { blas_handle_ = blas; }

X
xiaoxiaohehe001 已提交
353 354
  void SetBlasTensorCoreHandle(blasHandle_t handle) {
    blas_tensor_core_handle_ = handle;
355 356
  }

X
xiaoxiaohehe001 已提交
357 358
  void SetBlasTF32Handle(blasHandle_t handle) {
    blas_tf32_tensor_core_handle_ = handle;
359 360 361 362
  }

  void SetBlasLtHandle(blasLtHandle_t blaslt) { blaslt_handle_ = blaslt; }

X
xiaoxiaohehe001 已提交
363 364 365 366
  blasLtHandle_t GetBlasLtHandle() {
    std::call_once(flag_blaslt_, [=]() {
      if (!blaslt_handle_) phi::InitBlasLtHandle(&blaslt_handle_);
    });
367 368 369 370
    PD_CHECK(blaslt_handle_ != nullptr, "the gpu blasLt handle is nullptr.");
    return blaslt_handle_;
  }

W
Wilber 已提交
371
  dnnHandle_t GetDnnHandle() {
X
xiaoxiaohehe001 已提交
372 373 374
    std::call_once(flag_dnn_, [=]() {
      if (!dnn_handle_) phi::InitDnnHandle(&dnn_handle_, stream_, place_);
    });
W
Wilber 已提交
375 376 377 378 379 380 381
    PD_CHECK(dnn_handle_ != nullptr, "the gpu dnn handle is nullptr.");
    return dnn_handle_;
  }

  void DestroyInternalDnnHandle() {
#ifdef PADDLE_WITH_HIP
    if (owned_ && dnn_handle_ != nullptr) {
382
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::miopenDestroy(dnn_handle_));
W
Wilber 已提交
383 384 385 386
      dnn_handle_ = nullptr;
    }
#else
    if (owned_ && dnn_handle_ != nullptr) {
387
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cudnnDestroy(dnn_handle_));
W
Wilber 已提交
388 389 390 391 392 393 394
      dnn_handle_ = nullptr;
    }
#endif  // PADDLE_WITH_HIP
  }

  void SetDnnHandle(dnnHandle_t handle) { dnn_handle_ = handle; }

X
xiaoxiaohehe001 已提交
395 396 397 398
  solverHandle_t GetSolverHandle() {
    std::call_once(flag_slover_, [=]() {
      if (!solver_handle_) phi::InitSolverHandle(&solver_handle_, stream_);
    });
W
Wilber 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    PD_CHECK(solver_handle_ != nullptr, "the gpu solver handle is nullptr.");
    return solver_handle_;
  }

  void SetSolverHandle(solverHandle_t handle) { solver_handle_ = handle; }

  sparseHandle_t GetSparseHandle() const {
    PD_CHECK(sparse_handle_ != nullptr, "the gpu sparse handle is nullptr.");
    return sparse_handle_;
  }

  void SetSparseHandle(sparseHandle_t handle) { sparse_handle_ = handle; }

  void Wait() const {
#ifdef PADDLE_WITH_HIP
    hipError_t e_sync = hipSuccess;
#if !defined(_WIN32)
    e_sync = hipStreamSynchronize(stream_);
#else
    while (e_sync = hipStreamQuery(stream_)) {
      if (e_sync == hipErrorNotReady) continue;
      break;
    }
#endif  // !defined(_WIN32)
#else   // PADDLE_WITH_HIP
    cudaError_t e_sync = cudaSuccess;
#if !defined(_WIN32)
    e_sync = cudaStreamSynchronize(stream_);
#else
    while (e_sync = cudaStreamQuery(stream_)) {
      if (e_sync == cudaErrorNotReady) continue;
      break;
    }
#endif  // !defined(_WIN32)
#endif  // PADDLE_WITH_HIP

    PADDLE_ENFORCE_GPU_SUCCESS(e_sync);
  }

  void WaitEvent(gpuEvent_t ev) const {
#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_GPU_SUCCESS(hipStreamWaitEvent(stream_, ev, 0));
#else
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamWaitEvent(stream_, ev, 0));
#endif
  }

  ncclComm_t GetNcclComm() const {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    // PD_CHECK(nccl_comm_ != nullptr, "the gpu nccl_comm is nullptr.");
    return nccl_comm_;
#endif
    return nullptr;
  }

  void SetNcclComm(ncclComm_t comm) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    nccl_comm_ = comm;
#endif
  }

X
xiaoxiaohehe001 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
  inline void CublasCall(const std::function<void(blasHandle_t)>& callback) {
    std::call_once(flag_cublas_, [=]() {
      if (!blas_handle_) {
        phi::InitBlasHandle(&blas_handle_, stream_);
      }
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 9000
      if (!blas_tensor_core_handle_) {
        phi::InitBlasHandle(&blas_tensor_core_handle_, stream_);
        PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode(
            blas_tensor_core_handle_, CUBLAS_TENSOR_OP_MATH));
      }
#endif
#if CUDA_VERSION >= 11000
      if (!blas_tf32_tensor_core_handle_) {
        phi::InitBlasHandle(&blas_tf32_tensor_core_handle_, stream_);
        PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode(
            blas_tf32_tensor_core_handle_, CUBLAS_TF32_TENSOR_OP_MATH));
      }
#endif
#endif
    });
W
Wilber 已提交
482 483 484 485 486 487 488 489 490 491
    if (blas_tf32_tensor_core_handle_ != nullptr) {
      std::lock_guard<std::mutex> guard(blas_tf32_mtx_);
      callback(blas_tf32_tensor_core_handle_);
    } else {
      std::lock_guard<std::mutex> guard(blas_mtx_);
      callback(blas_handle_);
    }
  }

  inline void TensorCoreCublasCallIfAvailable(
X
xiaoxiaohehe001 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
      const std::function<void(blasHandle_t)>& callback) {
    std::call_once(flag_tensorcore_cublas_, [=]() {
      if (!blas_handle_) phi::InitBlasHandle(&blas_handle_, stream_);
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 9000
      if (!blas_tensor_core_handle_) {
        phi::InitBlasHandle(&blas_tensor_core_handle_, stream_);
        PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode(
            blas_tensor_core_handle_, CUBLAS_TENSOR_OP_MATH));
      }
#endif
#if CUDA_VERSION >= 11000
      if (!blas_tf32_tensor_core_handle_) {
        phi::InitBlasHandle(&blas_tf32_tensor_core_handle_, stream_);
        PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode(
            blas_tf32_tensor_core_handle_, CUBLAS_TF32_TENSOR_OP_MATH));
      }
#endif
#endif
    });
W
Wilber 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
    if (blas_tensor_core_handle_ != nullptr) {
      std::lock_guard<std::mutex> guard(blas_tensor_core_mtx_);
      callback(blas_tensor_core_handle_);
    } else {
      std::lock_guard<std::mutex> guard(blas_mtx_);
      callback(blas_handle_);
    }
  }

  inline void CusparseCall(
      const std::function<void(sparseHandle_t)>& callback) const {
    std::lock_guard<std::mutex> guard(sparse_mtx_);
    callback(sparse_handle_);
  }

  void RecordEvent(gpuEvent_t ev, const std::function<void()>& callback) const {
    callback();
    RecordEvent(ev);
  }

  void RecordEvent(gpuEvent_t ev) const {
#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_GPU_SUCCESS(hipEventRecord(ev, stream_));
#else
    PADDLE_ENFORCE_GPU_SUCCESS(cudaEventRecord(ev, stream_));
#endif
  }

  void AddStreamCallback(const std::function<void()>& callback) const {
L
Leo Chen 已提交
541
    // NOTE(zhiqiu): better use threadpool here, otherwise "std::async" may
X
xiaoxiaohehe001 已提交
542
    // launch too many threads and result in thread oversubscription.
L
Leo Chen 已提交
543 544
    auto* callback_func = new std::function<void()>(std::move(callback));
    auto* func = new std::function<void()>([this, callback_func] {
W
Wilber 已提交
545
      std::lock_guard<std::mutex> lock(stream_call_back_mtx_);
L
Leo Chen 已提交
546 547 548 549 550
      VLOG(4) << "Stream callback";
      last_future_ = std::async(std::launch::async, [callback_func]() {
        std::unique_ptr<std::function<void()>> releaser(callback_func);
        (*callback_func)();
      });
W
Wilber 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    });

#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_GPU_SUCCESS(
        hipStreamAddCallback(stream_, internal::StreamCallbackFunc, func, 0));
#endif
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10000
    PADDLE_ENFORCE_GPU_SUCCESS(
        cudaLaunchHostFunc(stream_, internal::StreamCallbackFunc, func));
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        cudaStreamAddCallback(stream_, internal::StreamCallbackFunc, func, 0));
#endif
#endif
  }

  void WaitStreamCallback() const {
#if defined(PADDLE_WITH_HIP) || defined(PADDLE_WITH_CUDA)
570
    phi::backends::gpu::GpuStreamSync(stream_);
W
Wilber 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
#endif
    {
      std::lock_guard<std::mutex> lock(stream_call_back_mtx_);
      if (last_future_.valid()) {
        last_future_.wait();
      }
    }
  }

  bool owned_{false};
  Place place_;
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
  int max_threads_per_block_;
  std::array<int, 3> max_grid_dim_size_;

  gpuStream_t stream_{nullptr};
  Eigen::GpuDevice* eigen_device_{nullptr};
  blasHandle_t blas_handle_{nullptr};
  blasHandle_t blas_tensor_core_handle_{nullptr};
  blasHandle_t blas_tf32_tensor_core_handle_{nullptr};
595
  blasLtHandle_t blaslt_handle_{nullptr};
W
Wilber 已提交
596 597 598 599 600
  dnnHandle_t dnn_handle_{nullptr};
  solverHandle_t solver_handle_{nullptr};
  sparseHandle_t sparse_handle_{nullptr};
  DnnWorkspaceHandle* workspace_{nullptr};

X
xiaoxiaohehe001 已提交
601 602 603 604 605 606 607
  std::once_flag flag_blas_;
  std::once_flag flag_blaslt_;
  std::once_flag flag_dnn_;
  std::once_flag flag_slover_;
  std::once_flag flag_cublas_;
  std::once_flag flag_tensorcore_cublas_;

W
Wilber 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.

  // NOTE: Distributed communicator, distributed framework manages its
  // resources.
  ncclComm_t nccl_comm_{nullptr};
#endif

  mutable std::mutex blas_mtx_;
  mutable std::mutex blas_tensor_core_mtx_;
  mutable std::mutex blas_tf32_mtx_;
  mutable std::mutex sparse_mtx_;
  mutable std::mutex stream_call_back_mtx_;
  mutable std::future<void> last_future_;

  Allocator* allocator_{nullptr};  // external resource.
  // A internal resouce to initinalize eigen_device.
  std::unique_ptr<internal::EigenGpuStreamDevice> eigen_stream_{nullptr};
};

GPUContext::GPUContext() : DeviceContext(), impl_(std::make_unique<Impl>()) {}

W
Wilber 已提交
634 635 636 637
GPUContext::GPUContext(GPUContext&&) = default;

GPUContext& GPUContext::operator=(GPUContext&&) = default;

W
Wilber 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
GPUContext::GPUContext(const GPUPlace& place)
    : DeviceContext(), impl_(std::make_unique<Impl>(place)) {}

GPUContext::~GPUContext() = default;

const Place& GPUContext::GetPlace() const { return impl_->GetPlace(); }

gpuStream_t GPUContext::stream() const { return impl_->GetStream(); }

dnnHandle_t GPUContext::cudnn_handle() const { return impl_->GetDnnHandle(); }

blasHandle_t GPUContext::cublas_handle() const {
  return impl_->GetBlasHandle();
}

653 654 655 656
blasLtHandle_t GPUContext::cublaslt_handle() const {
  return impl_->GetBlasLtHandle();
}

W
Wilber 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
solverHandle_t GPUContext::cusolver_dn_handle() const {
  return impl_->GetSolverHandle();
}

sparseHandle_t GPUContext::cusparse_handle() const {
  return impl_->GetSparseHandle();
}

void GPUContext::Wait() const { impl_->Wait(); }

void GPUContext::WaitEvent(gpuEvent_t ev) const { impl_->WaitEvent(ev); }

bool GPUContext::tensor_core_available() const {
  return impl_->IsTensorCoreAvailable();
}

int GPUContext::GetComputeCapability() const {
  return impl_->compute_capability_;
}

int GPUContext::GetMaxPhysicalThreadCount() const {
  return impl_->multi_process_ * impl_->max_threads_per_mp_;
}

int GPUContext::GetSMCount() const { return impl_->multi_process_; }

int GPUContext::GetMaxThreadsPerBlock() const {
  return impl_->max_threads_per_block_;
}

std::array<int, 3> GPUContext::GetCUDAMaxGridDimSize() const {
  return impl_->max_grid_dim_size_;
}

Eigen::GpuDevice* GPUContext::eigen_device() const {
  return impl_->eigen_device();
}

W
Wilber 已提交
695
DnnWorkspaceHandle GPUContext::cudnn_workspace_handle() const {
W
Wilber 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
  return impl_->GetDnnWorkspace();
}

void GPUContext::CublasCall(
    const std::function<void(blasHandle_t)>& callback) const {
  impl_->CublasCall(callback);
}

void GPUContext::TensorCoreCublasCallIfAvailable(
    const std::function<void(blasHandle_t)>& callback) const {
  impl_->TensorCoreCublasCallIfAvailable(callback);
}

void GPUContext::CusparseCall(
    const std::function<void(sparseHandle_t)>& callback) const {
  impl_->CusparseCall(callback);
}

void GPUContext::RecordEvent(gpuEvent_t ev,
                             const std::function<void()>& callback) const {
  impl_->RecordEvent(ev, callback);
}

void GPUContext::RecordEvent(gpuEvent_t ev) const { impl_->RecordEvent(ev); }

void GPUContext::AddStreamCallback(
    const std::function<void()>& callback) const {
  impl_->AddStreamCallback(callback);
}

void GPUContext::WaitStreamCallback() const { impl_->WaitStreamCallback(); }

ncclComm_t GPUContext::nccl_comm() const { return impl_->GetNcclComm(); }

void GPUContext::set_nccl_comm(ncclComm_t comm) { impl_->SetNcclComm(comm); }

void GPUContext::Init() {
  impl_->allocator_ = const_cast<Allocator*>(&this->GetAllocator());
  impl_->Init();
}

X
xiaoxiaohehe001 已提交
737 738 739 740
void GPUContext::SetStream(gpuStream_t stream) {
  impl_->allocator_ = const_cast<Allocator*>(&this->GetAllocator());
  impl_->SetStream(stream);
}
W
Wilber 已提交
741 742 743 744 745 746 747 748 749

void GPUContext::SetEigenDevice(Eigen::GpuDevice* device) {
  impl_->SetEigenDevice(device);
}

void GPUContext::SetBlasHandle(blasHandle_t blas) {
  impl_->SetBlasHandle(blas);
}

X
xiaoxiaohehe001 已提交
750 751 752 753 754 755 756 757
void GPUContext::SetBlasTensorCoreHandle(blasHandle_t handle) {
  impl_->SetBlasTensorCoreHandle(handle);
}

void GPUContext::SetBlasTF32Handle(blasHandle_t handle) {
  impl_->SetBlasTF32Handle(handle);
}

758 759 760 761
void GPUContext::SetBlasLtHandle(blasLtHandle_t blaslt) {
  impl_->SetBlasLtHandle(blaslt);
}

W
Wilber 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
void GPUContext::SetDnnHandle(dnnHandle_t handle) {
  impl_->SetDnnHandle(handle);
}

void GPUContext::SetSolverHandle(solverHandle_t handle) {
  impl_->SetSolverHandle(handle);
}

void GPUContext::SetSparseHandle(sparseHandle_t handle) {
  impl_->SetSparseHandle(handle);
}

void GPUContext::SetDnnWorkspaceHandle(DnnWorkspaceHandle* handle) {
  impl_->workspace_ = handle;
}

void GPUContext::PartialInitWithoutAllocator() {
  impl_->PartialInitWithoutAllocator();
}

void GPUContext::PartialInitWithAllocator() {
  impl_->allocator_ = const_cast<Allocator*>(&this->GetAllocator());
  impl_->PartialInitWithAllocator();
}

void GPUContext::SetComputeCapability(int val) {
  impl_->compute_capability_ = val;
}

void GPUContext::SetMaxThreadsPerMultiProcessor(int val) {
  impl_->max_threads_per_mp_ = val;
}

void GPUContext::SetMultiProcessors(int val) { impl_->multi_process_ = val; }

void GPUContext::SetMaxThreadsPerBlock(int val) {
  impl_->max_threads_per_block_ = val;
}

void GPUContext::SetMaxGridDimSize(const std::array<int, 3>& val) {
  impl_->max_grid_dim_size_ = val;
}

void GPUContext::SetDriverVersion(int val) { impl_->driver_version_ = val; }

void GPUContext::SetRuntimeVersion(int val) { impl_->runtime_version_ = val; }

809
}  // namespace phi