reduce.h 42.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17 18 19
// CUDA and HIP use same api
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
37
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
38
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
39
#include "paddle/fluid/platform/fast_divmod.h"
40
#include "paddle/fluid/string/string_helper.h"
41 42 43 44 45 46 47 48
#include "paddle/phi/api/ext/dispatch.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/utils/array.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
49

50 51 52 53
// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
#define REDUCE_VEC_SIZE 4

54
namespace kps = phi::kps;
55

56
namespace phi {
57 58
namespace kernels {

59 60 61 62 63 64 65 66 67 68 69 70 71 72
namespace details {

static inline int GetLastPow2(int n) {
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
  return std::max(1, n - (n >> 1));
}

static inline int64_t AlignUp(int64_t a, int64_t b) { return (a + b - 1) / b; }

// get strides of x_dim, reduce_dim and left_dim for reduceLastDim and reduceAny
73 74
static inline std::vector<int> GetDimStrides(const std::vector<int>& dims,
                                             const std::vector<int>& idx) {
75
  int n = static_cast<int>(idx.size());
76 77
  if (n == 0) return std::vector<int>();
  std::vector<int> strides(n);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
  strides.back() = 1;
  for (int i = n - 2; i >= 0; --i) {
    strides[i] = strides[i + 1] * dims[idx[i + 1]];
  }
  return strides;
}

// get blockDim for reduceLastDim and reduceAny
static inline int GetBlockDim(int block_dim) {
  return block_dim >= kps::details::kReduceMaxThread
             ? kps::details::kReduceMaxThread
             : GetLastPow2(block_dim);
}

// check reduce rand is valid
static inline void CheckReduceRank(int reduce_rank, int rank) {
  if (rank % 2 == 0) {
    PADDLE_ENFORCE_EQ(reduce_rank,
                      rank / 2,
97
                      phi::errors::InvalidArgument(
98 99 100 101 102 103 104 105 106 107 108
                          "ReduceOp: invalid reduce rank. When rank = %d, "
                          "reduce_rank must be %d, but got %d.",
                          rank,
                          rank / 2,
                          reduce_rank));
  } else {
    auto lower_rank = (rank - 1) / 2;
    auto upper_rank = (rank + 1) / 2;
    PADDLE_ENFORCE_EQ(
        reduce_rank == lower_rank || reduce_rank == upper_rank,
        true,
109
        phi::errors::InvalidArgument(
110 111 112 113 114 115 116 117 118 119 120
            "ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
            "must be %d or %d, but got %d.",
            rank,
            lower_rank,
            upper_rank,
            reduce_rank));
  }
}

// convert dims from vector to array
template <typename T, size_t ElementCount, typename VectorLikeType>
121
static inline phi::Array<T, ElementCount> VectorToArray(
122
    const VectorLikeType& vec) {
123 124 125 126 127 128 129
  PADDLE_ENFORCE_LE(
      vec.size(),
      ElementCount,
      phi::errors::InvalidArgument("Cub reduce Array: size not match. Received "
                                   "vec.size() %d > ElementCount %d.",
                                   vec.size(),
                                   ElementCount));
130
  size_t n = static_cast<size_t>(vec.size());
131
  phi::Array<T, ElementCount> ret;
132 133 134 135 136 137
  for (size_t i = 0; i < n; ++i) {
    ret[i] = vec[i];
  }
  return ret;
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151
static inline std::vector<int> GetReduceDim(const std::vector<int64_t>& dims,
                                            int dim_size,
                                            bool reduce_all) {
  std::vector<int> reduce_dims;
  if (reduce_all) {
    reduce_dims.resize(dim_size);
    int reduce_size = reduce_dims.size();
    for (int i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = i;
    }
  } else {
    for (auto e : dims) {
      PADDLE_ENFORCE_LT(e,
                        dim_size,
152
                        phi::errors::InvalidArgument(
153 154 155 156 157 158 159 160 161 162
                            "ReduceOp: invalid axis, when x_dims is %d, "
                            "axis[i] should less than x_dims, but got %d.",
                            dim_size,
                            e));
      reduce_dims.push_back(e >= 0 ? e : e + dim_size);
    }
  }
  return reduce_dims;
}

163 164
}  // namespace details

165
constexpr int kMaxRank = phi::DDim::kMaxRank;
166 167 168 169 170 171 172 173 174

enum ReduceType {
  kReduceLastDim = 0x01,    // when reduce_dim[0] == x_dim.size() - 1;
  kReduceHigherDim = 0x02,  // ReduceFirstDim or reduceSecondDim
  kReduceAny = 0x03,        // when reduce_dim.size() > 1
};

struct IndexCalculator {
  IndexCalculator(int dim,
175 176 177
                  const std::vector<int>& cal_dims,
                  const std::vector<int>& cal_strides,
                  const std::vector<int>& full_strides)
178 179 180
      : dim(dim) {
    dims = details::VectorToArray<int, kMaxRank>(cal_dims);
    strides = details::VectorToArray<int, kMaxRank>(full_strides);
N
niuliling123 已提交
181 182
    reduce_strides = details::VectorToArray<int, kMaxRank>(cal_strides);
#ifndef PADDLE_WITH_XPU_KP
183 184 185 186 187 188 189
    std::vector<paddle::platform::FastDivMod> cal_divmoders;
    // fast divmod
    for (auto i : cal_strides) {
      cal_divmoders.push_back(paddle::platform::FastDivMod(i));
    }
    divmoders = details::VectorToArray<paddle::platform::FastDivMod, kMaxRank>(
        cal_divmoders);
N
niuliling123 已提交
190
#endif
191 192 193
  }

  __device__ inline int operator()(int offset) const {
N
niuliling123 已提交
194 195 196 197 198 199 200 201 202 203 204 205
#ifdef PADDLE_WITH_XPU_KP
    int index = 0;
#pragma unroll
    for (int i = 0; i < kMaxRank; ++i) {
      if (i == dim) {
        break;
      }
      index += (offset / reduce_strides[i]) * strides[dims[i]];
      offset = offset % reduce_strides[i];
    }
    return index;
#else
206 207 208 209 210 211 212 213 214 215 216
    int index = 0;
#pragma unroll
    for (int i = 0; i < kMaxRank; ++i) {
      if (i == dim) {
        break;
      }
      auto divmod = divmoders[i].Divmod(offset);
      index += (divmod.val[0] * strides[dims[i]]);
      offset = divmod.val[1];
    }
    return index;
N
niuliling123 已提交
217
#endif
218 219 220
  }

  int dim;
221 222
  phi::Array<int, kMaxRank> dims;
  phi::Array<int, kMaxRank> strides;
N
niuliling123 已提交
223 224
  phi::Array<int, kMaxRank> reduce_strides;
#ifndef PADDLE_WITH_XPU2
225
  phi::Array<paddle::platform::FastDivMod, kMaxRank> divmoders;
N
niuliling123 已提交
226
#endif
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
};

template <bool ReduceLastDim = false>
struct ReduceIndexMapping {
  const kps::DimConfig dim;
  HOSTDEVICE explicit ReduceIndexMapping(const kps::DimConfig& dims)
      : dim(dims) {}

  __device__ __forceinline__ int BlockIdX() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    } else {
      return cluster_id() % dim.split_num_x;
    }
#else
    return blockIdx.x;
#endif
  }

  __device__ __forceinline__ int BlockIdY() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return (cluster_id() % dim.split_num_x);
    } else {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    }
#else
    return blockIdx.y;
#endif
  }

  __device__ __forceinline__ int BlockDimX() {
#ifdef PADDLE_WITH_XPU2
    return dim.deal_size_x;
#else
    return blockDim.x;
#endif
  }

  __device__ __forceinline__ int BlockDimY() {
#ifdef PADDLE_WITH_XPU2
N
niuliling123 已提交
269
    return 1;
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
#else
    return blockDim.y;
#endif
  }

  __device__ __forceinline__ int GridDimX() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.split_num_y;
    } else {
      return dim.split_num_x;
    }
#else
    return gridDim.x;
#endif
  }

  __device__ __forceinline__ int GridDimY() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.split_num_x;
    } else {
      return dim.split_num_y;
    }
#else
    return gridDim.y;
#endif
  }

  __device__ __forceinline__ int GetLoopSize() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.deal_size_y;
    } else {
      return dim.deal_size_x;
    }
#else
    return 1;
#endif
  }
};

// when reduce_type == kReduceLastDim this struct will be used
// for higher performance
struct OneDimIndexCal {
  explicit OneDimIndexCal(int num) : stride(num) {}

  __device__ inline int operator()(int index) const { return index * stride; }
  int stride;
};

// reduce config
template <typename Ty>
struct ReduceConfig {
324 325
  ReduceConfig(const std::vector<int>& origin_reduce_dims,
               const std::vector<int>& origin_x_dim)
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
      : reduce_dims_origin(origin_reduce_dims), x_dim(origin_x_dim) {}

  // get the parameters of reduceKernel
  void Run() {
    // step1: update the reduce_dim left_dim and x_dim
    SetReduceDim();

    // step2: get the strides of dim for reduceAny and reduceLastDim
    SetStrides();

    // step3: get the type of reduce
    SetReduceType();

    // step4: set the block and grid for launch kernel
    SetBlockDim();
  }

  // when should_reduce_again is true, we need malloc temp space for temp data
  void SetOutputData(Ty* y_data,
                     const paddle::platform::Place& place,
346
                     phi::DenseTensor* tmp) {
347
    if (should_reduce_again) {
348
      tmp->ResizeAndAllocate(phi::make_ddim(
349
          {static_cast<int64_t>(left_num * grid.z * grid.y * sizeof(Ty))}));
350
      output_data = tmp->mutable_data<Ty>(place);
351 352 353 354 355 356 357 358 359 360
    } else {
      output_data = y_data;
    }
  }

 private:
  // set reduce_dim, left_dim and update x_dim
  // eg: x_dim = [2, 4, 6] origin_reduce_dims = [0, 1]
  //     --SetReduceDim--> x_dim = [8,6], reduce_dim = [0], left_dim = [1]
  void SetReduceDim() {
361
    std::set<int> reduce_set;
362 363 364 365 366
    for (auto e : reduce_dims_origin) {
      auto pos = e >= 0 ? e : e + x_dim.size();
      reduce_set.insert(pos);
    }

367
    std::vector<int> reduce_dim_temp(reduce_set.begin(), reduce_set.end());
368 369 370
    std::sort(reduce_dim_temp.begin(), reduce_dim_temp.end());

    // update reduce_dim and x_dim
371
    std::vector<int> x_new_dim;
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

    reduce_dim.push_back(reduce_dim_temp[0]);
    x_new_dim.push_back(x_dim[0]);

    int idx_reduce = 1;
    int num = 0;

    if (reduce_dim_temp.size() > 1) {
      for (int i = 1; i < x_dim.size(); i++) {
        if ((idx_reduce < reduce_dim_temp.size()) &&
            (i == reduce_dim_temp[idx_reduce])) {
          int result =
              reduce_dim_temp[idx_reduce] - reduce_dim[reduce_dim.size() - 1];
          bool is_equal = ((result - num) == 1);
          if (is_equal) {
            x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
            num++;
          } else {
            reduce_dim.push_back(reduce_dim_temp[idx_reduce] - num);
            x_new_dim.push_back(x_dim[i]);
          }
          idx_reduce++;
        } else {
          x_new_dim.push_back(x_dim[i]);
        }
      }
    } else {
      x_new_dim = x_dim;
    }

    // update x_dim
    x_dim = x_new_dim;
404
    std::vector<int>().swap(x_new_dim);
405

406
    std::vector<int> reduce_dim_new;
407 408 409 410 411
    int is_reduced = 0;
    for (auto e : reduce_dim) {
      is_reduced |= 1 << e;
    }

412
    std::vector<int>().swap(reduce_dim);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

    for (int i = 0; i < x_dim.size(); i++) {
      if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) {
        x_new_dim.push_back(x_dim[i]);
        if ((is_reduced >> i) & 1)
          reduce_dim_new.push_back(x_new_dim.size() - 1);
      } else {
        x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
      }
    }

    x_dim = x_new_dim;
    reduce_dim = reduce_dim_new;

    int x_rank = static_cast<int>(x_dim.size());
    std::set<int> left_set;

    for (int i = 0; i < x_rank; ++i) {
      left_set.insert(i);
    }

    for (auto e : reduce_dim) {
      left_set.erase(e);
    }

    left_dim.assign(left_set.begin(), left_set.end());

    // if the last dim gets involved in reduction
    reduce_last_dim = (reduce_dim.back() == x_dim.size() - 1);
  }

  // set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny
  // eg: x_dim = [8, 6], reduce_dim = [0], left_dim = [1]
  //     --SetStrides--> x_strides= [6,1], reduce_strides = [1],
  //     left_strides = [1]
  void SetStrides() {
449
    std::vector<int> idx_dim;
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    for (int i = 0; i < x_dim.size(); i++) {
      idx_dim.push_back(i);
    }

    x_strides = details::GetDimStrides(x_dim, idx_dim);
    reduce_strides = details::GetDimStrides(x_dim, reduce_dim);
    left_strides = details::GetDimStrides(x_dim, left_dim);
    reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]];

    left_num = 1;
    if (left_dim.size()) {
      left_num = left_strides[0] * x_dim[left_dim[0]];
    }
  }

  // get the reduceType
  // eg: x_dim = [8, 6] reduce_dim = [0] --> ReduceHigherDim -->reduceFirstDim
  //     x_dim = [8, 6] reduce_dim = [1] --> reduceLastDim
  //     x_dim = [8] reduce_dim = [0] --> reduceAll
  //     x_dim = [8, 6, 4, 2] reduce_dim = [0, 2] --> reduceAny
  void SetReduceType() {
    int rank = x_dim.size();
    int reduce_rank = reduce_dim.size();
    bool is_last_dim =
        (rank == 2) && (reduce_rank == 1) && (reduce_dim[0] == 1);
    if (rank == reduce_rank || is_last_dim) {
N
niuliling123 已提交
476 477 478
#ifdef PADDLE_WITH_XPU_KP
      reduce_type = static_cast<int>(ReduceType::kReduceAny);
#else
479
      reduce_type = static_cast<int>(ReduceType::kReduceLastDim);
N
niuliling123 已提交
480
#endif
481 482
    } else if (reduce_rank == 1) {
// ReduceFirstDim and reduceSecondDim
N
niuliling123 已提交
483
#ifdef PADDLE_WITH_XPU_KP
484 485 486 487 488 489 490 491 492 493 494 495 496
      if (reduce_dim[0] == 0) {
        reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
      } else {
        reduce_type = static_cast<int>(ReduceType::kReduceAny);
      }
#else
      reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
#endif
    } else {
      reduce_type = static_cast<int>(ReduceType::kReduceAny);
    }
  }

N
niuliling123 已提交
497
#ifndef PADDLE_WITH_XPU_KP
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
  void SetBlockDimForReduceAny(dim3* block_dim, dim3* grid_dim) {
    constexpr int min_reduce_num_per_thread = 16;
    constexpr int max_reduce_num_per_thread = 256;
    constexpr int max_num_threads = kps::details::kReduceMaxThread;

    // set block size.
    // 1. If reduce_last_dim == true, all the threads whose threadIdx.y are same
    //    will process the reduction for one output.
    //    The number of output for one block is blockDim.y;
    // 2. If reduce_last_dim == false, different threadIdx.x will process
    //    different reduction and gets the output separately. If it is
    //    necessary, it should reduce in block y.
    //    The number of output for one block is blockDim.x;
    int block_x, block_y;
    int grid_num, reduce_num_per_thread;
    if (reduce_last_dim) {
      block_x = details::GetBlockDim(reduce_num);
      block_y = details::GetBlockDim(left_num);
      block_dim->x = block_x;
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      grid_num = details::AlignUp(left_num, block_dim->y);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->x);
    } else {
      block_x = details::GetBlockDim(left_num);
      block_y = details::GetBlockDim(reduce_num);
      block_dim->x = std::min(block_x, 32);
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      block_dim->x =
          std::min(block_x, static_cast<int>(max_num_threads / block_dim->y));
      grid_num = details::AlignUp(left_num, block_dim->x);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->y);
    }
    int device_id = paddle::platform::GetCurrentDeviceId();
533
    int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
534
    int max_threads_per_mp =
535
        paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    int max_threads = max_threads_per_mp * max_mp;
    int num_threads = block_dim->x * block_dim->y;
    int max_num_blocks = max_threads / num_threads;

    // set grid size.
    // Whether to set grid.y larger than 1, there are 3 following rules:
    // 1. The number that each thread process should no less than
    //    min_reduce_num_per_threadbut no more than max_reduce_num_per_thread;
    // 2. It should maximize the utilization of SM.
    // So we choose the minimum between input_split_num_1 and input_split_num_3
    // to make each thread process as mush data as possible. Meanwhile,
    // the number cannot be larger than max_reduce_num_per_thread, so we
    // choose the maximum between the result above and input_split_num_2.
    int input_split_num_1 =
        details::AlignUp(reduce_num_per_thread, min_reduce_num_per_thread);
    int input_split_num_2 =
        details::AlignUp(reduce_num_per_thread, max_reduce_num_per_thread);
    int input_split_num_3 = details::AlignUp(max_num_blocks, grid_num);

    grid_dim->x = grid_num;
    grid_dim->y = std::max(std::min(input_split_num_1, input_split_num_3),
                           input_split_num_2);
    // if grid.y > 1, we need launch reduce kernel again.
    if (grid_dim->y > 1) {
      should_reduce_again = true;
    }
  }

  // set block and grid for launch kernel
  // for ReduceHigherDim: if block is enough -> splite reduce_num
  //                     else init block(32, 1) grid(block_num, 1)
  // for others: block(block_num, 1) , grid(left_num, 1)
  void SetBlockDimForHigher(dim3* block_dim, dim3* grid_dim) {
    int last_dim_num = x_dim.back();
    // update left_num
    int grid_z = left_num / last_dim_num;
    left_num = last_dim_num;
    grid_dim->z = grid_z;
    int device_id = paddle::platform::GetCurrentDeviceId();
575
    int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
576
    int max_threads_per_mp =
577
        paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    int max_threads = max_threads_per_mp * max_mp;
    // init
    int num_block = (max_threads / left_num);
    block_dim->x = details::GetBlockDim(left_num);
    grid_dim->x = details::AlignUp(left_num, block_dim->x);
    blocking_size = reduce_num;

    if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) {
      blocking_size = details::GetLastPow2(reduce_num / num_block);
      if (blocking_size <= 1) {
        blocking_size = details::GetLastPow2(sqrt(reduce_num));
      } else if (blocking_size * 2 < reduce_num) {
        blocking_size *= 2;
      }
      should_reduce_again = true;
      grid_dim->y = details::AlignUp(reduce_num, blocking_size);
    }
  }
N
niuliling123 已提交
596
#endif
597 598 599 600 601 602 603 604

  void SetBlockDim() {
    // init
    int block_num = details::GetBlockDim(reduce_num);
    should_reduce_again = false;
    dim3 block_dim(block_num, 1, 1);
    dim3 grid_dim(left_num, 1, 1);
    blocking_size = reduce_num;
N
niuliling123 已提交
605
#ifdef PADDLE_WITH_XPU_KP
606
    if (reduce_last_dim) {
N
niuliling123 已提交
607
      block_dim.x = 64;
608
      block_dim.y = reduce_num;
N
niuliling123 已提交
609 610
      grid_dim.x = 1;
      grid_dim.y = 8;
611
    } else {
N
niuliling123 已提交
612
      block_dim.x = 64;
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
      block_dim.y = left_num;
      grid_dim.x = 8;
      grid_dim.y = 1;
    }
#else
    if (reduce_type == ReduceType::kReduceHigherDim) {
      SetBlockDimForHigher(&block_dim, &grid_dim);
    } else {
      SetBlockDimForReduceAny(&block_dim, &grid_dim);
    }
#endif

    block = block_dim;
    grid = grid_dim;
  }

 public:
630 631 632 633 634 635 636
  std::vector<int> reduce_dims_origin;
  std::vector<int> reduce_dim;
  std::vector<int> x_dim;
  std::vector<int> left_dim;
  std::vector<int> x_strides;
  std::vector<int> left_strides;
  std::vector<int> reduce_strides;
637 638 639 640 641 642 643 644 645 646 647 648 649 650

  int reduce_type;
  int reduce_num;
  int left_num;
  int blocking_size;
  bool should_reduce_again;
  bool reduce_last_dim;

  Ty* output_data;

  dim3 block;
  dim3 grid;
};

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
// when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp,
          typename Calculator>
__global__ void ReduceAnyKernel(const Tx* x,
                                Ty* y,
                                ReduceOp reducer,
                                TransformOp transformer,
                                MPType init,
                                int reduce_num,
                                int left_num,
                                bool reduce_last_dim,
                                const Calculator reduce_index_calculator,
                                const Calculator left_index_calculator,
                                const kps::DimConfig dim) {
  int input_idx, left_idx, stride;
  int block_size = 0;
  bool need_store = true;
  int loop_left = 0;
  int tid = 0;
  // the last dim gets involved in reduction
  int store_offset = 0;
  int stride_left = 0;
  if (reduce_last_dim) {
    auto block = ReduceIndexMapping<true>(dim);
    input_idx = block.BlockIdY() * block.BlockDimX();
    left_idx = block.BlockIdX() * block.BlockDimY() + THREAD_ID_Y;
    stride = block.GridDimY() * block.BlockDimX();
    block_size = block.BlockDimX();
    need_store = (THREAD_ID_X == 0) && (left_idx < left_num);
    store_offset = block.BlockIdY() * left_num + left_idx;
    loop_left = min(block.GetLoopSize(), left_num - left_idx);
    stride_left = 1;
N
niuliling123 已提交
689
    tid = THREAD_ID_X;
690 691 692 693 694 695 696 697 698 699
  } else {
    auto block = ReduceIndexMapping<false>(dim);
    input_idx = block.BlockIdY() * block.BlockDimY();
    left_idx = block.BlockIdX() * block.BlockDimX() + THREAD_ID_X;
    stride = block.GridDimY() * block.BlockDimY();
    block_size = block.BlockDimY();
    need_store = (THREAD_ID_Y == 0) && (left_idx < left_num);
    loop_left = min(block.GetLoopSize(), left_num - left_idx);
    stride_left = block.BlockDimX() * block.GridDimX();
    store_offset = block.BlockIdY() * left_num + left_idx;
N
niuliling123 已提交
700
    tid = THREAD_ID_Y;
701 702 703 704 705
  }
  // calculate the offset, means the addr where each thread really start.
  // 1. reduce for each thread
  MPType input_compute[REDUCE_VEC_SIZE];
  Tx input_reg[REDUCE_VEC_SIZE];
N
niuliling123 已提交
706
  int input_idx_tmp = input_idx;
707 708
  for (int i = 0; i < loop_left; i += stride_left) {
    int input_offset = left_index_calculator(left_idx + i);
N
niuliling123 已提交
709
    const _ptr_ Tx* input = x + input_offset;
710 711 712
    MPType reduce_var = init;
    // load REDUCE_VEC_SIZE data once, and then compute
    int bound = reduce_num - (REDUCE_VEC_SIZE - 1) * stride;
N
niuliling123 已提交
713
    input_idx = input_idx_tmp;
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
    for (; input_idx + block_size < bound;
         input_idx += REDUCE_VEC_SIZE * stride) {
      kps::ReadDataReduce<Tx,
                          Tx,
                          1,
                          REDUCE_VEC_SIZE,
                          1,
                          1,
                          Calculator,
                          kps::IdentityFunctor<Tx>,
                          false>(&input_reg[0],
                                 input,
                                 input_idx,
                                 reduce_index_calculator,
                                 1,
                                 reduce_num,
                                 1,
                                 stride,
                                 kps::IdentityFunctor<Tx>(),
                                 reduce_last_dim);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &input_compute[0], &input_reg[0], transformer);
      kps::Reduce<MPType,
                  REDUCE_VEC_SIZE,
                  1,
                  1,
                  ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &input_compute[0], reducer, reduce_last_dim);
    }

    kps::Init<MPType, REDUCE_VEC_SIZE>(&input_compute[0], init);
    kps::ReadDataReduce<Tx,
                        MPType,
                        1,
                        REDUCE_VEC_SIZE,
                        1,
                        1,
                        Calculator,
                        TransformOp,
                        true>(&input_compute[0],
                              input,
                              input_idx,
                              reduce_index_calculator,
                              1,
                              reduce_num - input_idx,
                              1,
                              stride,
                              transformer,
                              reduce_last_dim);
    kps::Reduce<MPType,
                REDUCE_VEC_SIZE,
                1,
                1,
                ReduceOp,
                kps::details::ReduceMode::kLocalMode>(
        &reduce_var, &input_compute[0], reducer, reduce_last_dim);

    kps::Reduce<MPType, 1, 1, 1, ReduceOp, kps::details::kGlobalMode>(
        &reduce_var, &reduce_var, reducer, reduce_last_dim);
    if (need_store) {
      y[store_offset + i] = static_cast<Ty>(reduce_var);
    }
  }
}

template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp>
__global__ void ReduceHigherDimKernel(const Tx* x,
                                      Ty* y,
                                      ReduceOp reducer,
                                      TransformOp transformer,
                                      MPType init,
                                      int reduce_num,
                                      int left_num,
                                      int blocking_size,
                                      const kps::DimConfig dim) {
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  auto block = ReduceIndexMapping<false>(dim);
  int idy = block.BlockIdY() * blocking_size;
  int idx = block.BlockIdX() * block.BlockDimX();
  int idz = BLOCK_ID_Z * left_num;
  int stride = dim.split_num_x * dim.deal_size_x;
  int size = left_num - dim.rem_x;
  int loop_size = min(reduce_num - idy, blocking_size);
  int store_offset = block.BlockIdY() * left_num + idz * block.GridDimY();
  int block_offset = idy * left_num + idz * reduce_num;
N
niuliling123 已提交
805
  const _ptr_ Tx* input = x + block_offset;
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
  Tx reduce_input;
  for (; idx < size; idx += stride) {
    MPType reduce_var = init;
    MPType reduce_compute = init;
    for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
      kps::ReadData<Tx, Tx, 1, 1, 1, false>(&reduce_input,
                                            input + loop_idx * left_num + idx,
                                            block.BlockDimX(),
                                            1,
                                            1,
                                            left_num);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &reduce_compute, &reduce_input, transformer);
      kps::Reduce<MPType,
                  1,
                  1,
                  1,
                  ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &reduce_compute, reducer, false);
    }
    Ty result = static_cast<Ty>(reduce_var);
    kps::WriteData<Ty, 1, 1, 1, false>(
        y + store_offset + idx, &result, block.BlockDimX());
  }

  if (idx < left_num) {
    MPType reduce_var = init;
    MPType reduce_compute = init;
    for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
      kps::ReadData<Tx, Tx, 1, 1, 1, true>(&reduce_input,
                                           input + loop_idx * left_num + idx,
                                           dim.rem_x,
                                           1,
                                           1,
                                           left_num);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &reduce_compute, &reduce_input, transformer);
      kps::Reduce<MPType,
                  1,
                  1,
                  1,
                  ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &reduce_compute, reducer, false);
    }
    Ty result = static_cast<Ty>(reduce_var);
    kps::WriteData<Ty, 1, 1, 1, true>(
        y + store_offset + idx, &result, dim.rem_x);
  }
}

template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp>
863 864 865
static void LaunchReduceKernel(const Tx* x_data,
                               Ty* y_data,
                               const ReduceOp& reducer,
866
                               const TransformOp& transform,
867
                               MPType init,
N
niuliling123 已提交
868
                               KPStream stream,
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
                               ReduceConfig<Ty> config) {
  if (config.reduce_type == kReduceLastDim) {
    int stride_reduce = 1;
    int stride_left = config.reduce_num;
    // for higher performance
    auto reduce_index_calculator = OneDimIndexCal(stride_reduce);
    auto left_index_calculator = OneDimIndexCal(stride_left);

    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.block.y,
                                        0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

N
niuliling123 已提交
885
#ifdef PADDLE_WITH_XPU_KP
886 887 888 889 890
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
N
niuliling123 已提交
891 892 893 894 895 896 897 898 899 900 901 902
                    OneDimIndexCal><<<8, 64, 0, stream>>>(
        x_data,
        config.output_data,
        reducer,
        transform,
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
903
#else
904 905 906 907 908 909
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
                    OneDimIndexCal><<<config.grid, config.block, 0, stream>>>(
910 911 912
        x_data,
        config.output_data,
        reducer,
913
        transform,
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
#endif

  } else {
    int reduce_rank = config.reduce_strides.size();
    int left_rank = config.left_strides.size();
    auto reduce_index_calculator = IndexCalculator(reduce_rank,
                                                   config.reduce_dim,
                                                   config.reduce_strides,
                                                   config.x_strides);
    auto left_index_calculator = IndexCalculator(
        left_rank, config.left_dim, config.left_strides, config.x_strides);

    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.block.y,
                                        0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

N
niuliling123 已提交
941
#ifdef PADDLE_WITH_XPU_KP
942 943 944 945 946
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
N
niuliling123 已提交
947
                    IndexCalculator><<<8, 64, 0, stream>>>(
948 949 950
        x_data,
        config.output_data,
        reducer,
951
        transform,
952 953 954 955 956 957 958 959
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
#else
960 961 962 963 964 965
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
                    IndexCalculator><<<config.grid, config.block, 0, stream>>>(
966 967 968
        x_data,
        config.output_data,
        reducer,
969
        transform,
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
#endif
  }

  if (config.should_reduce_again) {
    dim3 block;
    dim3 grid;
    if (config.reduce_last_dim) {
      block = dim3(32, 1, 1);
      grid = dim3(details::AlignUp(config.left_num, 32), 1, 1);
    } else {
      block = dim3(config.block.x, 1, 1);
      grid = dim3(config.grid.x, 1, config.grid.z);
    }

    auto last_index = OneDimIndexCal(1);
    auto first_index = OneDimIndexCal(config.left_num);
    kps::DimConfig dim =
        kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
    dim.SetRem(config.left_num % block.x, 0, 0);
N
niuliling123 已提交
996 997 998 999 1000 1001 1002
#ifdef PADDLE_WITH_XPU_KP
    ReduceHigherDimKernel<
        Ty,
        Ty,
        MPType,
        ReduceOp,
        kps::IdentityFunctor<Ty, MPType>><<<8, 64, 0, stream>>>(
1003 1004 1005
        config.output_data,
        y_data,
        reducer,
1006
        kps::IdentityFunctor<Ty, MPType>(),
1007 1008 1009 1010 1011 1012
        init,
        config.grid.y,
        config.left_num,
        config.grid.y,
        dim);
#else
1013
    ReduceHigherDimKernel<
1014 1015 1016 1017 1018 1019 1020 1021
        Ty,
        Ty,
        MPType,
        ReduceOp,
        kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
        config.output_data,
        y_data,
        reducer,
1022
        kps::IdentityFunctor<Ty, MPType>(),
1023 1024 1025 1026 1027 1028 1029 1030 1031
        init,
        config.grid.y,
        config.left_num,
        config.grid.y,
        dim);
#endif
  }
}

1032 1033 1034 1035
template <typename Tx,
          typename Ty,
          template <typename> class ReduceOp,
          typename TransformOp>
1036
static typename std::enable_if<!std::is_same<Tx, phi::dtype::float16>::value,
1037 1038 1039 1040 1041 1042
                               void>::type
CubTensorReduceImpl(const Tx* x_data,
                    Ty* y_data,
                    const TransformOp& transform,
                    int reduce_num,
                    const paddle::platform::Place& place,
N
niuliling123 已提交
1043
                    KPStream stream) {
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
  auto reducer = ReduceOp<Ty>();
  cub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(x_data,
                                                                  transform);
  size_t temp_storage_bytes = 0;
  cub::DeviceReduce::Reduce(nullptr,
                            temp_storage_bytes,
                            trans_x,
                            y_data,
                            reduce_num,
                            reducer,
                            reducer.initial(),
                            stream);

1057 1058 1059 1060 1061
  phi::DenseTensor tmp = phi::DenseTensor(
      phi::make_intrusive<paddle::experimental::SharedStorage>(place),
      phi::DenseTensorMeta(
          phi::DataType::UINT8,
          phi::make_ddim({static_cast<int64_t>(temp_storage_bytes)})));
1062

1063
  auto* temp_storage = tmp.mutable_data<uint8_t>(place);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

  cub::DeviceReduce::Reduce(temp_storage,
                            temp_storage_bytes,
                            trans_x,
                            y_data,
                            reduce_num,
                            reducer,
                            reducer.initial(),
                            stream);
}

template <typename Tx,
          typename Ty,
          template <typename> class ReduceOp,
          typename TransformOp>
1079
static typename std::enable_if<std::is_same<Tx, phi::dtype::float16>::value,
1080 1081 1082 1083 1084 1085
                               void>::type
CubTensorReduceImpl(const Tx* x_data,
                    Ty* y_data,
                    const TransformOp& transform,
                    int reduce_num,
                    const paddle::platform::Place& place,
N
niuliling123 已提交
1086
                    KPStream stream) {
1087
  PADDLE_THROW(phi::errors::InvalidArgument(
1088 1089 1090
      "Tx should not be float16 when using cub::DeviceReduce::Reduce()."));
}

1091 1092
template <typename Tx,
          typename Ty,
1093 1094
          template <typename> class ReduceOp,
          typename TransformOp>
1095 1096 1097
void TensorReduceImpl(const phi::GPUContext& dev_ctx,
                      const phi::DenseTensor& x,
                      phi::DenseTensor* y,
1098 1099
                      const TransformOp& transform,
                      const std::vector<int>& origin_reduce_dims,
N
niuliling123 已提交
1100
                      KPStream stream) {
1101
  y->mutable_data<Ty>(x.place());
1102

1103
  auto x_dim = phi::vectorize<int>(x.dims());
1104 1105
  auto config = ReduceConfig<Ty>(origin_reduce_dims, x_dim);
  config.Run();
1106
  int numel = x.numel();
1107 1108 1109 1110
  // after config.run()
  // SetOutputData for ReduceHigherDim when should_reduce_again is true,
  // temp_output should be stored temp_data in output_data space or stored in
  // y_data;
1111

1112 1113 1114 1115
  phi::DDim tmp_ddim;
  phi::DenseTensor tmp = phi::DenseTensor(
      phi::make_intrusive<paddle::experimental::SharedStorage>(y->place()),
      phi::DenseTensorMeta(y->dtype(), tmp_ddim, y->layout()));
1116 1117

  auto x_data = x.data<Tx>();
1118
  auto y_data = y->data<Ty>();
1119 1120

  if (config.reduce_num == 1) {
1121 1122
    std::vector<const DenseTensor*> inputs = {&x};
    std::vector<DenseTensor*> outputs = {y};
1123
    funcs::ElementwiseKernel<Ty>(dev_ctx, inputs, &outputs, transform);
1124 1125 1126 1127
    return;
  }

  config.SetOutputData(y_data, x.place(), &tmp);
1128
  constexpr bool kIsTxFP16 = std::is_same<Tx, phi::dtype::float16>::value;
1129
  bool use_cub_reduce = config.reduce_num == numel && !kIsTxFP16;
N
niuliling123 已提交
1130
#ifndef PADDLE_WITH_XPU_KP
1131
  if (use_cub_reduce) {
1132
    CubTensorReduceImpl<Tx, Ty, ReduceOp, TransformOp>(
1133
        x_data, y_data, transform, config.reduce_num, x.place(), stream);
1134 1135
    return;
  }
N
niuliling123 已提交
1136
#endif
1137

1138 1139
  using MPType = typename kps::details::MPTypeTrait<Ty>::Type;
  auto reducer = ReduceOp<MPType>();
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
  // launch ReduceHigherDimKernel
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  // eg: x_dim = {nz, ny, nx}, nx != 1, axis can be 0 or 1
  //     if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx /
  //     32
  //     else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32
  if (config.reduce_type == ReduceType::kReduceHigherDim) {
    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.blocking_size,
                                        0);
    dim.SetRem(config.left_num % config.block.x,
               config.reduce_num % config.blocking_size,
               0);

N
niuliling123 已提交
1158
#ifdef PADDLE_WITH_XPU_KP
1159 1160 1161 1162
    ReduceHigherDimKernel<Tx,
                          Ty,
                          MPType,
                          ReduceOp<MPType>,
N
niuliling123 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
                          TransformOp><<<8, 64, 0, stream>>>(
        x_data,
        config.output_data,
        reducer,
        transform,
        reducer.initial(),
        config.reduce_num,
        config.left_num,
        config.blocking_size,
        dim);
1173
#else
1174
    ReduceHigherDimKernel<
1175 1176 1177
        Tx,
        Ty,
        MPType,
1178
        ReduceOp<MPType>,
1179 1180 1181 1182
        TransformOp><<<config.grid, config.block, 0, stream>>>(
        x_data,
        config.output_data,
        reducer,
1183
        transform,
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
        reducer.initial(),
        config.reduce_num,
        config.left_num,
        config.blocking_size,
        dim);
#endif

    if (config.should_reduce_again) {
      dim3 block = dim3(config.block.x, 1, 1);
      dim3 grid = dim3(config.grid.x, 1, config.grid.z);
      kps::DimConfig dim2 =
          kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
      dim2.SetRem(config.left_num % config.block.x, 0, 0);

N
niuliling123 已提交
1198
#ifdef PADDLE_WITH_XPU_KP
1199
      ReduceHigherDimKernel<
1200 1201 1202
          Ty,
          Ty,
          MPType,
1203
          ReduceOp<MPType>,
N
niuliling123 已提交
1204
          kps::IdentityFunctor<Ty, MPType>><<<8, 64, 0, stream>>>(
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
          config.output_data,
          y_data,
          reducer,
          kps::IdentityFunctor<Ty, MPType>(config.grid.y),
          reducer.initial(),
          config.grid.y,
          config.left_num,
          config.grid.y,
          dim2);
#else
1215
      ReduceHigherDimKernel<
1216 1217 1218
          Ty,
          Ty,
          MPType,
1219
          ReduceOp<MPType>,
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
          kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
          config.output_data,
          y_data,
          reducer,
          kps::IdentityFunctor<Ty, MPType>(config.grid.y),
          reducer.initial(),
          config.grid.y,
          config.left_num,
          config.grid.y,
          dim2);
#endif
    }
    return;
  }

  // when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
  // when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
  // function will be used
1238 1239
  LaunchReduceKernel<Tx, Ty, MPType, ReduceOp<MPType>, TransformOp>(
      x_data, y_data, reducer, transform, reducer.initial(), stream, config);
1240 1241
}

1242
}  // namespace kernels
1243 1244 1245 1246

template <typename T,
          template <typename> class ReduceOp,
          template <typename, typename> class TransformOp>
N
niuliling123 已提交
1247
void Reduce(const KPDevice& dev_ctx,
1248 1249 1250 1251 1252 1253 1254
            const DenseTensor& x,
            bool reduce_all,
            const std::vector<int64_t>& dims,
            bool keep_dim,
            DataType out_dtype,
            DenseTensor* out) {
  std::vector<int> reduce_dims =
1255
      phi::kernels::details::GetReduceDim(dims, x.dims().size(), reduce_all);
1256 1257 1258 1259 1260 1261

  int reduce_num = 1;
  for (auto i : reduce_dims) {
    reduce_num *= (x.dims())[i];
  }

N
niuliling123 已提交
1262
  KPStream stream = dev_ctx.stream();
1263

1264 1265
  if (out_dtype != phi::DataType::UNDEFINED && out_dtype != x.dtype()) {
    auto tmp_tensor = phi::Cast<T>(dev_ctx, x, out_dtype);
1266
    PD_VISIT_BOOL_AND_FLOATING_AND_COMPLEX_AND_3_TYPES(
1267 1268 1269
        phi::DataType::INT32,
        phi::DataType::INT64,
        phi::DataType::FLOAT16,
1270
        out_dtype,
1271
        "TensorReduceImpl",
1272 1273
        ([&] {
          using MPType = typename kps::details::MPTypeTrait<data_t>::Type;
1274 1275 1276 1277
          phi::kernels::TensorReduceImpl<data_t,
                                         data_t,
                                         ReduceOp,
                                         TransformOp<data_t, MPType>>(
W
Wilber 已提交
1278
              dev_ctx,
1279
              tmp_tensor,
W
Wilber 已提交
1280
              out,
1281
              TransformOp<data_t, MPType>(reduce_num),
W
Wilber 已提交
1282 1283
              reduce_dims,
              stream);
1284 1285 1286
        }));
  } else {
    using MPType = typename kps::details::MPTypeTrait<T>::Type;
1287
    phi::kernels::TensorReduceImpl<T, T, ReduceOp, TransformOp<T, MPType>>(
1288 1289 1290 1291 1292 1293
        dev_ctx,
        x,
        out,
        TransformOp<T, MPType>(reduce_num),
        reduce_dims,
        stream);
1294 1295
  }
}
1296
}  // namespace phi
1297 1298

#endif