modified_huber_loss_op.cc 4.4 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16 17 18 19 20 21 22 23

#include "paddle/operators/modified_huber_loss_op.h"

namespace paddle {
namespace operators {

class ModifiedHuberLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25 26
    PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized.");
27

Q
Qiao Longfei 已提交
28 29
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
30

Q
Qiao Longfei 已提交
31 32 33
    PADDLE_ENFORCE_EQ(x_dims, y_dims, "The shape of X and Y must be the same.");
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "The tensor rank of X must be 2.");
    PADDLE_ENFORCE_EQ(x_dims[1], 1, "The 2nd dimension of X must be 1.");
34

Q
Qiao Longfei 已提交
35 36
    ctx->SetOutputDim("IntermediateVal", x_dims);
    ctx->SetOutputDim("Out", {x_dims[0], 1});
37 38 39 40 41
  }
};

class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
42
  ModifiedHuberLossOpMaker(OpProto* proto, OpAttrChecker* op_checker)
43
      : OpProtoAndCheckerMaker(proto, op_checker) {
44
    AddInput("X",
K
kexinzhao 已提交
45
             "The input tensor of modified huber loss op. "
46 47
             "X is 2-D tensor with shape [batch_size, 1].");
    AddInput("Y",
K
kexinzhao 已提交
48 49
             "The target labels of modified huber loss op. "
             "The shape of Y is the same as X. Values of Y must be 0 or 1.");
50
    AddOutput("IntermediateVal",
Y
yangyaming 已提交
51 52 53
              "Variable to save intermediate result which will be reused in "
              "backward processing.")
        .AsIntermediate();
54
    AddOutput("Out", "Classification loss for X.");
Y
yangyaming 已提交
55
    AddComment(R"DOC(
K
kexinzhao 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
Modified Huber Loss Operator.

This operator is used in binary classification problem. The shape of
input X and target Y are both [N, 1] and so is the shape of the output loss.
Since target Y is not differentiable, calculating gradient for Y is illegal.
The formula of modified huber loss is:

$$
L(y, f(x)) = 
\begin{cases}
(\max(0, 1 - yf(x)))^2,  \text{if} \  yf(x) >= -1    \\
             -4yf(x),    \quad \text{otherwise}
\end{cases}
$$

Make sure the values of target label Y are in {0, 1} here. This operator will
72
scale values of Y to {-1, +1} when computing losses and gradients.
K
kexinzhao 已提交
73

Y
yangyaming 已提交
74
)DOC");
75 76 77 78 79 80 81
  }
};

class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

82
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
83 84 85 86 87 88 89 90 91 92 93
    PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("IntermediateVal"),
                   "Intermediate value must not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@Grad) must not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto intermediate_dims = ctx->GetInputDim("IntermediateVal");
    auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));
94 95

    PADDLE_ENFORCE_EQ(
Q
Qiao Longfei 已提交
96
        intermediate_dims, x_dims,
97
        "The shape of X and intermediate value must be the same.");
Q
Qiao Longfei 已提交
98
    PADDLE_ENFORCE_EQ(out_grad_dims, x_dims,
99
                      "The shape of Input(Out@Grad) and X must be the same.");
100

Q
Qiao Longfei 已提交
101 102 103
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
104 105 106 107 108 109 110 111 112 113 114 115 116
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(modified_huber_loss, ops::ModifiedHuberLossOp,
            ops::ModifiedHuberLossOpMaker, modified_huber_loss_grad,
            ops::ModifiedHuberLossGradOp);

REGISTER_OP_CPU_KERNEL(
    modified_huber_loss,
Q
QI JUN 已提交
117
    ops::ModifiedHuberLossKernel<paddle::platform::CPUDeviceContext, float>);
118 119
REGISTER_OP_CPU_KERNEL(modified_huber_loss_grad,
                       ops::ModifiedHuberLossGradCPUKernel<float>);