util.py 17.0 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Some Useful method for py_paddle.
"""

import swig_paddle
import os
import paddle.trainer.PyDataProviderWrapper
import paddle.proto.ParameterConfig_pb2
import paddle.proto.ModelConfig_pb2
import paddle.proto.TrainerConfig_pb2
import weakref
import numpy
import struct
import sys
import copy


def initializePaddle(*args):
    """
    To initialize paddle process.
    :param args: Command line options, such as --use_gpu=0, etc.
    :return: Nothing.
    """
    old_argv = copy.deepcopy(sys.argv)
    old_pypath = os.getenv("PYTHONPATH")
    pypath = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
    if old_pypath is not None:
        pypath = os.pathsep.join([pypath, old_pypath])
        os.putenv("PYTHONPATH", pypath)
    args = [""] + list(args)  # argv[0] is command name, it is not important.
    swig_paddle.__initPaddle__(args)
    sys.argv = old_argv


def __monkeypatch_init_paddle__():
    swig_paddle.__initPaddle__ = swig_paddle.initPaddle
    swig_paddle.initPaddle = initializePaddle


class __ParameterCallbackWrapper__(swig_paddle.UpdateCallback):
    """
    Wrap the python callable object to paddle.UpdateCallback.

    INTERNAL USE ONLY.
    """

    def __init__(self, callback):
        swig_paddle.UpdateCallback.__init__(self)
        self.callback = callback

    def apply(self, param):
        self.callback(param)

    @staticmethod
    def wrap(callback):
        """
        Cast the python callable object/paddle.UpdateCallback to
        swig_paddle.UpdateCallback.__disown__
        :param callback: callable or swig_paddle.UpdateCallback object.
        """
        if isinstance(callback, swig_paddle.UpdateCallback):
            return callback.__disown__()
        elif isinstance(callback, weakref.ProxyType):
            raise RuntimeError("Should not pass __disown__ object")
        else:
            return __ParameterCallbackWrapper__(callback).__disown__()


def __monkeypatch_gradient_machine__():
    """
    Add some class methods to GradientMachine.
    This method should be only used internally.
    """
    swig_paddle.GradientMachine.loadFromConfigFile = \
        staticmethod(loadGradientMachine)

    def __arguments_to_numpy__(i, arg):
        assert isinstance(arg, swig_paddle.Arguments)
        value = arg.getSlotValue(i)
        if value is not None:
            assert isinstance(value, swig_paddle.Matrix)
            value = value.copyToNumpyMat()
        ids = arg.getSlotIds(i)
        if ids is not None:
            assert isinstance(ids, swig_paddle.IVector)
            ids = ids.copyToNumpyArray()
        return {
            "value": value,
            "id": ids
        }

    def __matrix_to_numpy__(m):
        if isinstance(m, swig_paddle.Matrix):
            return m.copyToNumpyMat()
        elif isinstance(m, swig_paddle.IVector):
            return m.copyToNumpyArra()
        else:
            raise RuntimeError("Input arg should be matrix or vecotr.")

    def createFromConfigProto(protoObj,
                              createMode=swig_paddle.CREATE_MODE_NORMAL,
                              paramTypes=[swig_paddle.PARAMETER_VALUE,
                                          swig_paddle.PARAMETER_GRADIENT,
                                          swig_paddle.PARAMETER_MOMENTUM]):
        """
        Create Gradient Machine From Proto object.
        :param protoObj: Model config
        :type protoObj: proto.ModelConfig_pb2.ModelConfig
        :param createMode: Create Mode, default is normal.
        :type createMode: int
        :param paramTypes: the gradient machine parameter type.
        :type paramTypes: list of int
        :return: paddle.GradientMachine
        """
        assert isinstance(protoObj, paddle.proto.ModelConfig_pb2.ModelConfig)
        return swig_paddle.GradientMachine.createByConfigProtoStr(
            protoObj.SerializeToString(), createMode, paramTypes)

    swig_paddle.GradientMachine.createFromConfigProto = \
        staticmethod(createFromConfigProto)

    def forwardTest(self, inArgs):
        """
        forwardTest. forward gradient machine in test mode, and return a numpy
        matrix dict.

        :param inArgs: The input arguments
        :type inArgs: paddle.Arguments
        :return: A dictionary with keys ['id', 'value'], each value is a
                 numpy.ndarray.
        """
        outArgs = swig_paddle.Arguments.createArguments(0)
        self.forward(inArgs, outArgs, swig_paddle.PASS_TEST)
        return [__arguments_to_numpy__(i, outArgs) for i in xrange(
            outArgs.getSlotNum())]

    swig_paddle.GradientMachine.forwardTest = forwardTest

    # Monkey patching backward
    swig_paddle.GradientMachine.__backward__ = swig_paddle.GradientMachine.backward

    def backward(self, callback):
        """
        GradientMachine Backward
        :param callback: a callback which parameter is (paddle.Parameter) or
                         a paddle.UpdateCallback object.
        """
        self.__backward__(__ParameterCallbackWrapper__.wrap(callback))

    swig_paddle.GradientMachine.backward = backward

    # Monkey patching forwardBackward.
    swig_paddle.GradientMachine.__forwardBackward__ = \
        swig_paddle.GradientMachine.forwardBackward

    def forwardBackward(self, inArgs, outArgs, passType,
                        callback=swig_paddle.UpdateCallback()):
        """
        GradientMachine forward backward.
        :param inArgs: Input Arguments for GradientMachine.
        :type inArgs: paddle.Arguments
        :param outArgs: Output Arguments for GradientMachine.
        :type outArgs: paddle.Arguments
        :param passType: gradient machine's pass type.
        :type passType: paddle.PassType
        :param callback: a callable object with arguments (paddle.Parameter) or
                         a paddle.UpdateCallback it will be called when
                         backward
        """
        self.__forwardBackward__(inArgs, outArgs, passType,
                                 __ParameterCallbackWrapper__.wrap(callback))

    swig_paddle.GradientMachine.forwardBackward = forwardBackward

    def getParameters(self):
        return (self.getParameter(i) for i in xrange(self.getParameterSize()))

    swig_paddle.GradientMachine.getParameters = getParameters

    def getLayerOutputs(self, layerNames):
        """
        getLayerOutputs. get outputs of layers and return a numpy matrix dict.
        :param layerNames: layer names.
        :type layerNames: string or list.
        """
        if isinstance(layerNames, basestring):
            layerNames = [layerNames]
        elif not isinstance(layerNames, list):
            raise RuntimeError("Input args shuld be string or a sting list.")

        output = dict()
        for name in layerNames:
            output[name] = __matrix_to_numpy__(self.getLayerOutput(name))
        return output

    swig_paddle.GradientMachine.getLayerOutputs = getLayerOutputs

def loadGradientMachine(config_filename, model_dir=None):
    """
    Load a gradient machine from config file name/path.
    :param config_filename: The trainer config file name/path
    :param model_dir: The model parameter directory. None if same as the
    directory of config_filename
    :return: GradientMachine with some enhance methods.
    :rtype: paddle.GradientMachine
    """
    trainer_config = swig_paddle.TrainerConfig.createFromTrainerConfigFile(
        config_filename)
    assert isinstance(trainer_config, swig_paddle.TrainerConfig)
    model_conf = trainer_config.getModelConfig()
    network = swig_paddle.GradientMachine.createByModelConfig(model_conf)
    assert isinstance(network, swig_paddle.GradientMachine)
    if model_dir is None:
        model_dir = os.path.dirname(config_filename)
    network.loadParameters(model_dir)
    return network

def loadParameterFile(fn):
    """
    Load Paddle Parameter file to numpy.ndarray
    :param fn: file name or file like object.
    :type fn: str or file like object.
    :return: numpy array
    :rtype: numpy.ndarray
    :raise: paddle.UnsupportError when parameter format is wrong.
    """
    if isinstance(fn, str):
        with open(fn, 'rb') as f:
            return loadParameterFile(f)
    elif hasattr(fn, 'read'):  # File like object
        version, = struct.unpack('i', fn.read(4))
        if version != 0:
            raise swig_paddle.UnsupportError()
        value_length, = struct.unpack("I", fn.read(4))
        if value_length != 4 and value_length != 8:
            raise swig_paddle.UnsupportError()
        dtype = 'float32' if value_length == 4 else 'float64'
        param_size, = struct.unpack("L", fn.read(8))
        value = numpy.fromfile(fn, dtype)
        if len(value) != param_size:
            raise swig_paddle.UnsupportError()
        return value
    else:
        raise swig_paddle.UnsupportError()

class DataProviderWrapperConverter(object):
    """
    A class convert DataFormat from PyDataProvider Wrapper to
    py_paddle.paddle.Arguemnts.
    """

    class DenseValueConverter(object):
        """
        Internal class
        """

        def __init__(self, header_def):
            self.__dim__ = header_def.dim
            self.buf = []

        def append(self, other):
            assert len(other) == self.__dim__
            self.buf += other

        def __call__(self, slot_idx, arg):
            mat = swig_paddle.Matrix.createDense(self.buf,
                                            len(self.buf) / self.__dim__,
                                            self.__dim__)
            arg.setSlotValue(slot_idx, mat)

    class IdValueConverter(object):
        """
        Internal class
        """

        def __init__(self, *args):
            self.buf = []

        def append(self, other):
            assert isinstance(other, int)
            self.buf.append(other)

        def __call__(self, slot_idx, arg):
            arg.setSlotIds(slot_idx, swig_paddle.IVector.create(self.buf))

    class SparseNonValueConverter(object):
        """
        Internal class
        """

        def __init__(self, slot_def):
            self.indices = [0]
            self.cols = []
            self.dim = slot_def.dim

        def append(self, other):
            self.indices.append(self.indices[-1] + len(other))
            self.cols += other

        def __call__(self, slot_idx, arg):
            mat = swig_paddle.Matrix.createSparse(len(self.indices) - 1, self.dim,
                                             len(self.cols), True)
            assert isinstance(mat, swig_paddle.Matrix)
            mat.sparseCopyFrom(self.indices, self.cols)
            self.putIntoArg(slot_idx, arg, mat)

        def putIntoArg(self, slot_idx, arg, mat):
            arg.setSlotValue(slot_idx, mat)

    class SparseValueConverter(SparseNonValueConverter):
        """
        Internal class
        """

        def __init__(self, slot_def):
            super(DataProviderWrapperConverter.SparseValueConverter,
                  self).__init__(slot_def)
            self.values = []

        def append(self, other):
            super(DataProviderWrapperConverter.SparseValueConverter,
                  self).append(map(lambda x: x[0], other))
            self.values += map(lambda x: x[1], other)

        def __call__(self, slot_idx, arg):
            mat = swig_paddle.Matrix.createSparse(len(self.indices) - 1, self.dim,
                                             len(self.cols), False)
            assert isinstance(mat, swig_paddle.Matrix)
            mat.sparseCopyFrom(self.indices, self.cols, self.values)
            self.putIntoArg(slot_idx, arg, mat)

    __SLOT_VALUE_CONVERTER_MAP__ = {
        paddle.trainer.PyDataProviderWrapper.DenseSlot: DenseValueConverter,
        paddle.trainer.PyDataProviderWrapper.IndexSlot: IdValueConverter,
        paddle.trainer.PyDataProviderWrapper.SparseNonValueSlot:
            SparseNonValueConverter,
        paddle.trainer.PyDataProviderWrapper.SparseValueSlot: SparseValueConverter
    }

    def __init__(self, use_seq, header):
        """
        Ctor
        :param use_seq: True if use sequence.
        :param header:  List of slots type,
                       trainer.PyDataProviderWrapper.SlotType
        """
        self.__use_seq__ = use_seq
        self.__header__ = header

    def convert(self, wrapper_data, argument=None):
        """
        Convert PyDataProviderWrapper format to paddle.Argument
        :param wrapper_data: PyDataProviderWrapper yield's data list.
        :param argument: The output paddle.Arguments.
                        If it is not None, it will assign data in this
                        arguments, else it will create new arguments.
        :return: arguments that contains data.
        :rtype: paddle.Arguments
        """
        if argument is None:
            argument = swig_paddle.Arguments.createArguments(0)
        assert isinstance(argument,swig_paddle.Arguments)
        argument.resize(len(self.__header__))

        values = map(lambda x:
                     DataProviderWrapperConverter.__SLOT_VALUE_CONVERTER_MAP__[
                         x.__class__](x),
                     self.__header__)

        if self.__use_seq__:
            seq_dim = [[] for _ in xrange(self.__header__.__len__())]
            seq_start_pos = [[0] for _ in xrange(self.__header__.__len__())]

            for each_sample in wrapper_data:
                for slot_idx, sequence in enumerate(each_sample):
                    for raw_data in sequence:
                        values[slot_idx].append(raw_data)
                    seq_start_pos[slot_idx].append(
                        seq_start_pos[slot_idx][-1] + len(sequence))
                    seq_dim[slot_idx].append(len(sequence))

            for slot_idx in xrange(len(self.__header__)):
                argument.setSlotSequenceDim(slot_idx, swig_paddle.IVector.create(
                    seq_dim[slot_idx]))
                argument.setSlotSequenceStartPositions(
                    slot_idx, swig_paddle.IVector.create(seq_start_pos[slot_idx]))
        else:
            for each_sample in wrapper_data:
                for raw_data, value in zip(each_sample, values):
                    value.append(raw_data)

        for i, v in enumerate(values):
            v(i, argument)

        return argument

    def __call__(self, wrapper_data, argument=None):
        """
        Invoke self.convert. See documents in self.convert.
        """
        return self.convert(wrapper_data, argument)


def __monkey_patch_protobuf_objects__():
    def ParameterConfig_toProto(self):
        """
        Convert paddle.ParameterConfig to
        proto.ParameterConfig_pb2.ParameterConfig

        :return: proto.ParameterConfig_pb2.ParameterConfig object.
        """
        param_conf = paddle.proto.ParameterConfig_pb2.ParameterConfig()
        param_conf.ParseFromString(self.toProtoString())
        return param_conf

    swig_paddle.ParameterConfig.toProto = ParameterConfig_toProto

    def OptimizationConfig_toProto(self):
        """
        Convert paddle.OptimizationConfig to
        proto.TrainerConfig_pb2.OptimizationConfig

        :return: proto.TrainerConfig_pb2.OptimizationConfig
        """
        opt_conf = proto.TrainerConfig_pb2.OptimizationConfig()
        opt_conf.ParseFromString(self.toProtoString())
        return opt_conf

    swig_paddle.OptimizationConfig.toProto = OptimizationConfig_toProto

    def OptimizationConfig_createFromProto(protoObj):
        """
        Create a new paddle.OptimizationConfig from
        proto.TrainerConfig_pb2.OptimizationConfig

        :param protoObj: proto.TrainerConfig_pb2.OptimizationConfig
        :return: paddle.OptimizationConfig
        """

        assert isinstance(protoObj, paddle.proto.TrainerConfig_pb2.OptimizationConfig)
        return swig_paddle.OptimizationConfig.createFromProtoString(
            protoObj.SerializeToString())

    swig_paddle.OptimizationConfig.createFromProto = staticmethod(
        OptimizationConfig_createFromProto)


def __monkey_patch_parameter__():
    def getBufs(self):
        """
        get all parameter vectors.
        NOTE: the return value is a generator. Maybe you need to cast to
        list or tuple or something else.

        :return: generator of all parameter vectors.
        :rtype: generator
        """
        return (self.getBuf(i) for i in xrange(swig_paddle.NUM_PARAMETER_TYPES))

    swig_paddle.Parameter.getBufs = getBufs


def monkeypatches():
    patches = [__monkeypatch_init_paddle__, __monkeypatch_gradient_machine__,
               __monkey_patch_protobuf_objects__,
               __monkey_patch_parameter__]
    for patch in patches:
        patch()