while_op_helper.cc 9.2 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/controlflow/while_op_helper.h"
16

S
sneaxiy 已提交
17
#include <string>
S
sneaxiy 已提交
18 19
#include <unordered_set>
#include <utility>
20
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
21
#include "paddle/fluid/framework/program_desc.h"
22
#include "paddle/fluid/operators/controlflow/op_variant.h"
23
#include "paddle/fluid/platform/device_context.h"
24
#include "paddle/fluid/string/string_helper.h"
S
sneaxiy 已提交
25 26 27 28 29 30 31 32 33 34 35 36

namespace paddle {
namespace operators {

// Set skip variables of while_op and while_grad_op
// These variables should be skipped when eager deletion enables.
// It is because:
//  1. while_grad_op needs some variables defined in while_op.
//  2. while_grad_op needs variables from the previous time step.
static void SetSkipVars(const OpVariant &op, std::vector<std::string> attr) {
  auto &attrs = const_cast<framework::AttributeMap &>(op.Attrs());
  VLOG(2) << "Prepare to skip " << attr.size()
37
          << " var(s): " << string::join_strings(attr, ' ');
S
sneaxiy 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  attrs[kSkipEagerDeletionVars] = std::move(attr);
}

// Check whether the forward while_op and while_grad_op match
// The program may have many while_ops.
static bool IsMatchedWhileOpAndWhileGradOp(const OpVariant &fwd_op,
                                           const OpVariant &grad_op) {
  return fwd_op.Inputs().at(kX) == grad_op.Inputs().at(kX) &&
         fwd_op.Outputs().at(kOutputs) == grad_op.Inputs().at(kOutputs);
}

// Test whether the variable is skippable in forward while_op
// The variable is skippable in while_op when the variable used in while_grad
// is not from grad_block.
static bool IsSkippableVar(const std::string &name,
                           framework::BlockDesc *grad_block) {
  return name != framework::kEmptyVarName && !grad_block->HasVar(name);
}

static void ModifyWhileOpAndWhileGradOpAttr(const OpVariant &fwd_op,
                                            const OpVariant &bwd_op) {
  auto *grad_block = bwd_op.Attr<framework::BlockDesc *>(kStepBlock);

  // Find all skippable variables in forward while_op
  std::unordered_set<std::string> forward_skip_vars;
  for (auto *op_desc : grad_block->AllOps()) {
    for (auto &in_arg_name : op_desc->InputArgumentNames()) {
      if (IsSkippableVar(in_arg_name, grad_block)) {
        forward_skip_vars.insert(in_arg_name);
      }
    }

    for (auto &out_arg_name : op_desc->OutputArgumentNames()) {
      if (IsSkippableVar(out_arg_name, grad_block)) {
        forward_skip_vars.insert(out_arg_name);
      }
    }
  }

  SetSkipVars(fwd_op, std::vector<std::string>(forward_skip_vars.begin(),
                                               forward_skip_vars.end()));

  // Find all skippable variables in while_grad_op
  // The skipped variables are those which would be used across time steps.
  auto &fwd_input = fwd_op.Inputs().at(kX);
  auto &in_grads = bwd_op.Outputs().at(framework::GradVarName(kX));
  PADDLE_ENFORCE_EQ(
      fwd_input.size(), in_grads.size(),
86 87 88 89 90
      platform::errors::PreconditionNotMet(
          "Backward output gradient number does not match forward input number."
          "The number of forward input number is %d and the number of backward "
          "output geadient number is %d.",
          fwd_input.size(), in_grads.size()));
S
sneaxiy 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

  std::unordered_set<std::string> backward_skip_vars;
  for (size_t i = 0; i < in_grads.size(); ++i) {
    if (in_grads[i] == framework::kEmptyVarName) {
      continue;
    }
    backward_skip_vars.insert(in_grads[i]);
    backward_skip_vars.insert(framework::GradVarName(fwd_input[i]));
  }

  SetSkipVars(bwd_op, std::vector<std::string>(backward_skip_vars.begin(),
                                               backward_skip_vars.end()));
}

// Find all while_ops and while_grad_ops in the graph or program
// The while_grad_op and while_op may located in different blocks
// So we should traverse all blocks in the program and find them out.
108 109
static void FindAllWhileAndWhileGradOp(const framework::ProgramDesc &program,
                                       std::vector<OpVariant> *while_ops,
S
sneaxiy 已提交
110
                                       std::vector<OpVariant> *while_grad_ops) {
111 112 113 114 115 116 117
  PADDLE_ENFORCE_GE(
      while_ops->size(), while_grad_ops->size(),
      platform::errors::PreconditionNotMet(
          "There are more while_grad_ops than forward while_ops in the graph "
          "or program, the number of while_ops is %d and the number of "
          "while_grad_ops is %d.",
          while_ops->size(), while_grad_ops->size()));
118 119
  for (size_t i = 1; i < program.Size(); ++i) {
    auto &block = program.Block(i);
S
sneaxiy 已提交
120 121 122 123 124 125 126 127 128 129
    for (size_t j = 0; j < block.OpSize(); ++j) {
      auto *op = block.Op(j);
      if (op->Type() == "while") {
        while_ops->emplace_back(op);
      } else if (op->Type() == "while_grad") {
        while_grad_ops->emplace_back(op);
      }
    }
  }

130 131 132 133 134 135 136
  PADDLE_ENFORCE_GE(
      while_ops->size(), while_grad_ops->size(),
      platform::errors::InvalidArgument(
          "There are more while_grad_ops than forward while_ops in the graph "
          "or program, the number of while_ops is %d and the number of "
          "while_grad_ops is %d.",
          while_ops->size(), while_grad_ops->size()));
S
sneaxiy 已提交
137 138 139
}

static void PrepareSafeEagerDeletionOnWhileOpAndWhileGradOpImpl(
140 141 142
    const framework::ProgramDesc &program, std::vector<OpVariant> *while_ops,
    std::vector<OpVariant> *while_grad_ops) {
  FindAllWhileAndWhileGradOp(program, while_ops, while_grad_ops);
S
sneaxiy 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

  VLOG(2) << "Found while op num: " << while_ops->size()
          << ", while grad op num: " << while_grad_ops->size();

  if (while_grad_ops->empty()) {
    return;
  }

  std::unordered_set<OpVariant, OpVariant::Hasher> while_op_set(
      while_ops->begin(), while_ops->end());

  for (auto &bwd_op : *while_grad_ops) {
    const OpVariant *matched_fwd_op = nullptr;
    for (auto &fwd_op : while_op_set) {
      if (IsMatchedWhileOpAndWhileGradOp(fwd_op, bwd_op)) {
158 159 160 161
        PADDLE_ENFORCE_EQ(matched_fwd_op, nullptr,
                          platform::errors::PreconditionNotMet(
                              "Found multiple while forward ops match while "
                              "grad ops."));
S
sneaxiy 已提交
162 163 164 165
        matched_fwd_op = &fwd_op;
      }
    }
    PADDLE_ENFORCE_NOT_NULL(matched_fwd_op,
166 167
                            platform::errors::PreconditionNotMet(
                                "Cannot find matched forward while op."));
S
sneaxiy 已提交
168 169 170 171 172 173
    ModifyWhileOpAndWhileGradOpAttr(*matched_fwd_op, bwd_op);
    while_op_set.erase(*matched_fwd_op);
  }
}

void PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(
174
    const framework::ProgramDesc &program, int block_id,
S
sneaxiy 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    const std::vector<std::unique_ptr<framework::OperatorBase>> &all_ops) {
  // If block_id is not 0, returns
  // This is because all while_ops and while_grad_ops in the whole program
  // would be processed when block_id is 0 (i.e. when Executor::Run() or
  // ParallelExecutor constructs).

  // What's more, all while_ops and while_grad_ops must be processed when
  // block_id is zero. If not, while_op may run first and erase variables
  // used in while_grad_op, and in this moment, while_grad_ops may be not
  // constructed yet.
  if (block_id != 0) return;

  std::vector<OpVariant> fwd_ops, bwd_ops;
  for (auto &op : all_ops) {
    if (op->Type() == "while") {
      fwd_ops.emplace_back(op.get());
    } else if (op->Type() == "while_grad") {
      bwd_ops.emplace_back(op.get());
    }
  }
195 196
  PrepareSafeEagerDeletionOnWhileOpAndWhileGradOpImpl(program, &fwd_ops,
                                                      &bwd_ops);
S
sneaxiy 已提交
197 198 199
}

void PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(
200
    const framework::ProgramDesc &program,
S
sneaxiy 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213
    const std::vector<framework::OperatorBase *> &while_ops,
    const std::vector<framework::OperatorBase *> &while_grad_ops) {
  std::vector<OpVariant> fwd_ops, bwd_ops;
  fwd_ops.reserve(while_ops.size());
  for (auto *op : while_ops) {
    fwd_ops.emplace_back(op);
  }

  bwd_ops.reserve(while_grad_ops.size());
  for (auto *op : while_grad_ops) {
    bwd_ops.emplace_back(op);
  }

214 215
  PrepareSafeEagerDeletionOnWhileOpAndWhileGradOpImpl(program, &fwd_ops,
                                                      &bwd_ops);
S
sneaxiy 已提交
216 217
}

218 219 220 221 222 223 224 225 226 227 228
// Make while_op could run on GPU place
bool GetCondData(const framework::LoDTensor &cond) {
  if (platform::is_cpu_place(cond.place())) {
    return cond.data<bool>()[0];
  }
  // when platform::is_gpu_place(cond.place()) is true
  std::unique_ptr<framework::LoDTensor> cpu_cond{new framework::LoDTensor()};
#ifdef PADDLE_WITH_CUDA
  framework::TensorCopySync(cond, platform::CPUPlace(), cpu_cond.get());
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
G
guofei 已提交
229
      "This version of PaddlePaddle does NOT support GPU but got GPU tensor "
230
      "Cond in WhileOp. Please compile WITH_GPU option."));
231 232 233 234
#endif
  return cpu_cond->data<bool>()[0];
}

S
sneaxiy 已提交
235 236
}  // namespace operators
}  // namespace paddle