test_full_op.py 7.7 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest

import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
24
import paddle
W
wangchaochaohu 已提交
25
from paddle.fluid import compiler, Program, program_guard
26
from paddle.fluid.framework import _test_eager_guard
W
wangchaochaohu 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40


# Test python API
class TestFullAPI(unittest.TestCase):
    def test_api(self):
        positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)

        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
        shape_tensor_int32 = fluid.data(
            name="shape_tensor_int32", shape=[2], dtype="int32")

        shape_tensor_int64 = fluid.data(
            name="shape_tensor_int64", shape=[2], dtype="int64")

41
        out_1 = paddle.full(shape=[1, 2], dtype="float32", fill_value=1.1)
W
wangchaochaohu 已提交
42

43
        out_2 = paddle.full(
44
            shape=[1, positive_2_int32], dtype="float32", fill_value=1.1)
W
wangchaochaohu 已提交
45

46
        out_3 = paddle.full(
47
            shape=[1, positive_2_int64], dtype="float32", fill_value=1.1)
W
wangchaochaohu 已提交
48

49
        out_4 = paddle.full(
50
            shape=shape_tensor_int32, dtype="float32", fill_value=1.2)
W
wangchaochaohu 已提交
51

52
        out_5 = paddle.full(
53
            shape=shape_tensor_int64, dtype="float32", fill_value=1.1)
W
wangchaochaohu 已提交
54

55
        out_6 = paddle.full(
W
wangchaochaohu 已提交
56 57
            shape=shape_tensor_int64, dtype=np.float32, fill_value=1.1)

58 59 60 61
        val = fluid.layers.fill_constant(shape=[1], dtype=np.float32, value=1.1)
        out_7 = paddle.full(
            shape=shape_tensor_int64, dtype=np.float32, fill_value=val)

W
wangchaochaohu 已提交
62
        exe = fluid.Executor(place=fluid.CPUPlace())
63
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
W
wangchaochaohu 已提交
64 65 66 67 68
            fluid.default_main_program(),
            feed={
                "shape_tensor_int32": np.array([1, 2]).astype("int32"),
                "shape_tensor_int64": np.array([1, 2]).astype("int64"),
            },
69
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])
W
wangchaochaohu 已提交
70 71 72

        assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
73
        assert np.array_equal(res_3, np.full([1, 2], 1.1, dtype="float32"))
W
wangchaochaohu 已提交
74 75 76
        assert np.array_equal(res_4, np.full([1, 2], 1.2, dtype="float32"))
        assert np.array_equal(res_5, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_6, np.full([1, 2], 1.1, dtype="float32"))
77
        assert np.array_equal(res_7, np.full([1, 2], 1.1, dtype="float32"))
W
wangchaochaohu 已提交
78

79 80 81 82 83
    def test_api_eager(self):
        with fluid.dygraph.base.guard():
            with _test_eager_guard():
                positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)
                positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
84 85 86
                positive_4_int64 = fluid.layers.fill_constant([1], "int64", 4,
                                                              True)

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
                out_1 = paddle.full(
                    shape=[1, 2], dtype="float32", fill_value=1.1)

                out_2 = paddle.full(
                    shape=[1, positive_2_int32.item()],
                    dtype="float32",
                    fill_value=1.1)

                out_3 = paddle.full(
                    shape=[1, positive_2_int64.item()],
                    dtype="float32",
                    fill_value=1.1)

                out_4 = paddle.full(
                    shape=[1, 2], dtype="float32", fill_value=1.2)

                out_5 = paddle.full(
                    shape=[1, 2], dtype="float32", fill_value=1.1)

                out_6 = paddle.full(
                    shape=[1, 2], dtype=np.float32, fill_value=1.1)

                val = fluid.layers.fill_constant(
                    shape=[1], dtype=np.float32, value=1.1)
                out_7 = paddle.full(
                    shape=[1, 2], dtype=np.float32, fill_value=val)
113 114 115 116 117 118 119 120 121 122 123

                out_8 = paddle.full(
                    shape=positive_2_int32, dtype="float32", fill_value=1.1)

                out_9 = paddle.full(
                    shape=[
                        positive_2_int32, positive_2_int64, positive_4_int64
                    ],
                    dtype="float32",
                    fill_value=1.1)

124
                # test for numpy.float64 as fill_value
125
                out_10 = paddle.full_like(
126
                    out_7, dtype=np.float32, fill_value=np.abs(1.1))
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

                assert np.array_equal(
                    out_1, np.full(
                        [1, 2], 1.1, dtype="float32"))
                assert np.array_equal(
                    out_2, np.full(
                        [1, 2], 1.1, dtype="float32"))
                assert np.array_equal(
                    out_3, np.full(
                        [1, 2], 1.1, dtype="float32"))
                assert np.array_equal(
                    out_4, np.full(
                        [1, 2], 1.2, dtype="float32"))
                assert np.array_equal(
                    out_5, np.full(
                        [1, 2], 1.1, dtype="float32"))
                assert np.array_equal(
                    out_6, np.full(
                        [1, 2], 1.1, dtype="float32"))
                assert np.array_equal(
                    out_7, np.full(
                        [1, 2], 1.1, dtype="float32"))
149 150 151 152
                assert np.array_equal(out_8, np.full([2], 1.1, dtype="float32"))
                assert np.array_equal(
                    out_9, np.full(
                        [2, 2, 4], 1.1, dtype="float32"))
153
                assert np.array_equal(
154
                    out_10, np.full(
155
                        [1, 2], 1.1, dtype="float32"))
156

W
wangchaochaohu 已提交
157 158 159 160 161 162

class TestFullOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            #for ci coverage
            self.assertRaises(
163
                TypeError, paddle.full, shape=[1], fill_value=5, dtype='uint4')
W
wangchaochaohu 已提交
164 165

            # The argument dtype of full must be one of bool, float16,
166
            #float32, float64, uint8, int16, int32 or int64
W
wangchaochaohu 已提交
167 168 169

            # The argument shape's type of full_op  must be list, tuple or Variable.
            def test_shape_type():
170
                paddle.full(shape=1, dtype="float32", fill_value=1)
W
wangchaochaohu 已提交
171 172 173 174 175

            self.assertRaises(TypeError, test_shape_type)

            # The argument shape's size of full_op must not be 0.
            def test_shape_size():
176
                paddle.full(shape=[], dtype="float32", fill_value=1)
W
wangchaochaohu 已提交
177 178 179 180 181 182 183

            self.assertRaises(AssertionError, test_shape_size)

            # The shape dtype of full op must be int32 or int64.
            def test_shape_tensor_dtype():
                shape = fluid.data(
                    name="shape_tensor", shape=[2], dtype="float32")
184
                paddle.full(shape=shape, dtype="float32", fill_value=1)
W
wangchaochaohu 已提交
185 186 187 188 189 190

            self.assertRaises(TypeError, test_shape_tensor_dtype)

            def test_shape_tensor_list_dtype():
                shape = fluid.data(
                    name="shape_tensor_list", shape=[1], dtype="bool")
191
                paddle.full(shape=[shape, 2], dtype="float32", fill_value=1)
W
wangchaochaohu 已提交
192 193 194 195 196 197

            self.assertRaises(TypeError, test_shape_tensor_list_dtype)


if __name__ == "__main__":
    unittest.main()