networks.py 52.4 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
peterzhang2029 已提交
15

Z
zhangjinchao01 已提交
16 17 18 19
from activations import LinearActivation, ReluActivation, SoftmaxActivation, \
    IdentityActivation, TanhActivation, SequenceSoftmaxActivation
from attrs import ExtraAttr
from default_decorators import wrap_name_default, wrap_act_default, \
Y
Yu Yang 已提交
20
    wrap_param_default, wrap_bias_attr_default, wrap_param_attr_default
Z
zhangjinchao01 已提交
21 22 23 24
from layers import *  # There are too many layers used in network, so import *
from poolings import MaxPooling, SumPooling
from paddle.trainer.config_parser import *

Q
qijun 已提交
25 26
__all__ = [
    'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool",
27 28 29 30
    "img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg',
    'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru',
    'simple_attention', 'simple_gru2', 'bidirectional_gru', 'text_conv_pool',
    'bidirectional_lstm', 'inputs', 'outputs'
Q
qijun 已提交
31
]
Z
zhangjinchao01 已提交
32 33 34 35 36

######################################################
#                     Text CNN                       #
######################################################

Q
qijun 已提交
37

Z
zhangjinchao01 已提交
38 39
@wrap_name_default("sequence_conv_pooling")
def sequence_conv_pool(input,
Q
qijun 已提交
40 41
                       context_len,
                       hidden_size,
Z
zhangjinchao01 已提交
42 43
                       name=None,
                       context_start=None,
Q
qijun 已提交
44 45
                       pool_type=None,
                       context_proj_layer_name=None,
Z
zhangjinchao01 已提交
46 47 48
                       context_proj_param_attr=False,
                       fc_layer_name=None,
                       fc_param_attr=None,
Q
qijun 已提交
49 50
                       fc_bias_attr=None,
                       fc_act=None,
Z
zhangjinchao01 已提交
51 52 53 54 55
                       pool_bias_attr=None,
                       fc_attr=None,
                       context_attr=None,
                       pool_attr=None):
    """
56
    Text convolution pooling group.
Z
zhangjinchao01 已提交
57 58 59

    Text input => Context Projection => FC Layer => Pooling => Output.

60
    :param name: group name.
Z
zhangjinchao01 已提交
61
    :type name: basestring
62
    :param input: input layer.
Z
zhangjinchao01 已提交
63 64 65 66 67 68
    :type input: LayerOutput
    :param context_len: context projection length. See
                        context_projection's document.
    :type context_len: int
    :param hidden_size: FC Layer size.
    :type hidden_size: int
69
    :param context_start: context start position. See
Z
zhangjinchao01 已提交
70
                          context_projection's context_start.
71
    :type context_start: int|None
Z
zhangjinchao01 已提交
72
    :param pool_type: pooling layer type. See pooling_layer's document.
73
    :type pool_type: BasePoolingType
Z
zhangjinchao01 已提交
74 75 76
    :param context_proj_layer_name: context projection layer name.
                                    None if user don't care.
    :type context_proj_layer_name: basestring
77 78 79
    :param context_proj_param_attr: padding parameter attribute of context projection layer.
                                    If false, it means padding always be zero.
    :type context_proj_param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
80 81 82
    :param fc_layer_name: fc layer name. None if user don't care.
    :type fc_layer_name: basestring
    :param fc_param_attr: fc layer parameter attribute. None if user don't care.
83
    :type fc_param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
84 85
    :param fc_bias_attr: fc bias parameter attribute. False if no bias,
                         None if user don't care.
86 87
    :type fc_bias_attr: ParameterAttribute|False|None
    :param fc_act: fc layer activation type. None means tanh.
Z
zhangjinchao01 已提交
88
    :type fc_act: BaseActivation
89 90 91
    :param pool_bias_attr: pooling layer bias attr. False if no bias.
                           None if user don't care.
    :type pool_bias_attr: ParameterAttribute|False|None
Z
zhangjinchao01 已提交
92 93 94 95 96 97
    :param fc_attr: fc layer extra attribute.
    :type fc_attr: ExtraLayerAttribute
    :param context_attr: context projection layer extra attribute.
    :type context_attr: ExtraLayerAttribute
    :param pool_attr: pooling layer extra attribute.
    :type pool_attr: ExtraLayerAttribute
98
    :return: layer's output.
Z
zhangjinchao01 已提交
99 100 101 102 103 104
    :rtype: LayerOutput
    """
    # Set Default Value to param
    context_proj_layer_name = "%s_conv_proj" % name \
        if context_proj_layer_name is None else context_proj_layer_name

Q
qijun 已提交
105 106 107 108 109 110 111 112 113 114
    with mixed_layer(
            name=context_proj_layer_name,
            size=input.size * context_len,
            act=LinearActivation(),
            layer_attr=context_attr) as m:
        m += context_projection(
            input,
            context_len=context_len,
            context_start=context_start,
            padding_attr=context_proj_param_attr)
Z
zhangjinchao01 已提交
115 116 117

    fc_layer_name = "%s_conv_fc" % name \
        if fc_layer_name is None else fc_layer_name
Q
qijun 已提交
118 119 120 121 122 123 124 125
    fl = fc_layer(
        name=fc_layer_name,
        input=m,
        size=hidden_size,
        act=fc_act,
        layer_attr=fc_attr,
        param_attr=fc_param_attr,
        bias_attr=fc_bias_attr)
Z
zhangjinchao01 已提交
126

Q
qijun 已提交
127 128 129 130 131 132
    return pooling_layer(
        name=name,
        input=fl,
        pooling_type=pool_type,
        bias_attr=pool_bias_attr,
        layer_attr=pool_attr)
Z
zhangjinchao01 已提交
133 134 135 136 137 138 139 140


text_conv_pool = sequence_conv_pool

############################################################################
#                       Images                                             #
############################################################################

Q
qijun 已提交
141

Z
zhangjinchao01 已提交
142
@wrap_name_default("conv_pool")
Q
qijun 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
def simple_img_conv_pool(input,
                         filter_size,
                         num_filters,
                         pool_size,
                         name=None,
                         pool_type=None,
                         act=None,
                         groups=1,
                         conv_stride=1,
                         conv_padding=0,
                         bias_attr=None,
                         num_channel=None,
                         param_attr=None,
                         shared_bias=True,
                         conv_layer_attr=None,
                         pool_stride=1,
                         pool_padding=0,
                         pool_layer_attr=None):
Z
zhangjinchao01 已提交
161 162 163
    """
    Simple image convolution and pooling group.

164
    Img input => Conv => Pooling => Output.
Z
zhangjinchao01 已提交
165

166
    :param name: group name.
Z
zhangjinchao01 已提交
167
    :type name: basestring
168
    :param input: input layer.
Z
zhangjinchao01 已提交
169
    :type input: LayerOutput
170
    :param filter_size: see img_conv_layer for details.
Z
zhangjinchao01 已提交
171
    :type filter_size: int
172
    :param num_filters: see img_conv_layer for details.
Z
zhangjinchao01 已提交
173
    :type num_filters: int
174
    :param pool_size: see img_pool_layer for details.
Z
zhangjinchao01 已提交
175
    :type pool_size: int
176
    :param pool_type: see img_pool_layer for details.
Z
zhangjinchao01 已提交
177
    :type pool_type: BasePoolingType
178
    :param act: see img_conv_layer for details.
Z
zhangjinchao01 已提交
179
    :type act: BaseActivation
180
    :param groups: see img_conv_layer for details.
Z
zhangjinchao01 已提交
181
    :type groups: int
182
    :param conv_stride: see img_conv_layer for details.
Z
zhangjinchao01 已提交
183
    :type conv_stride: int
184
    :param conv_padding: see img_conv_layer for details.
Z
zhangjinchao01 已提交
185
    :type conv_padding: int
186
    :param bias_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
187
    :type bias_attr: ParameterAttribute
188
    :param num_channel: see img_conv_layer for details.
Z
zhangjinchao01 已提交
189
    :type num_channel: int
190
    :param param_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
191
    :type param_attr: ParameterAttribute
192
    :param shared_bias: see img_conv_layer for details.
Z
zhangjinchao01 已提交
193
    :type shared_bias: bool
194
    :param conv_layer_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
195
    :type conv_layer_attr: ExtraLayerAttribute
196
    :param pool_stride: see img_pool_layer for details.
Z
zhangjinchao01 已提交
197
    :type pool_stride: int
198
    :param pool_padding: see img_pool_layer for details.
Z
zhangjinchao01 已提交
199
    :type pool_padding: int
200
    :param pool_layer_attr: see img_pool_layer for details.
Z
zhangjinchao01 已提交
201
    :type pool_layer_attr: ExtraLayerAttribute
202
    :return: layer's output
Z
zhangjinchao01 已提交
203 204
    :rtype: LayerOutput
    """
Q
qijun 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    _conv_ = img_conv_layer(
        name="%s_conv" % name,
        input=input,
        filter_size=filter_size,
        num_filters=num_filters,
        num_channels=num_channel,
        act=act,
        groups=groups,
        stride=conv_stride,
        padding=conv_padding,
        bias_attr=bias_attr,
        param_attr=param_attr,
        shared_biases=shared_bias,
        layer_attr=conv_layer_attr)
    return img_pool_layer(
        name="%s_pool" % name,
        input=_conv_,
        pool_size=pool_size,
        pool_type=pool_type,
        stride=pool_stride,
        padding=pool_padding,
        layer_attr=pool_layer_attr)
Z
zhangjinchao01 已提交
227 228 229


@wrap_name_default("conv_bn_pool")
Q
qijun 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
def img_conv_bn_pool(input,
                     filter_size,
                     num_filters,
                     pool_size,
                     name=None,
                     pool_type=None,
                     act=None,
                     groups=1,
                     conv_stride=1,
                     conv_padding=0,
                     conv_bias_attr=None,
                     num_channel=None,
                     conv_param_attr=None,
                     shared_bias=True,
                     conv_layer_attr=None,
                     bn_param_attr=None,
                     bn_bias_attr=None,
                     bn_layer_attr=None,
                     pool_stride=1,
                     pool_padding=0,
                     pool_layer_attr=None):
Z
zhangjinchao01 已提交
251 252
    """
    Convolution, batch normalization, pooling group.
253 254
    
    Img input => Conv => BN => Pooling => Output.
Z
zhangjinchao01 已提交
255

256
    :param name: group name.
Z
zhangjinchao01 已提交
257
    :type name: basestring
258 259 260
    :param input: input layer.
    :type input: LayerOutput 
    :param filter_size: see img_conv_layer for details.
Z
zhangjinchao01 已提交
261
    :type filter_size: int
262
    :param num_filters: see img_conv_layer for details.
Z
zhangjinchao01 已提交
263
    :type num_filters: int
264
    :param pool_size: see img_pool_layer for details.
Z
zhangjinchao01 已提交
265
    :type pool_size: int
266
    :param pool_type: see img_pool_layer for details.
Z
zhangjinchao01 已提交
267
    :type pool_type: BasePoolingType
268
    :param act: see batch_norm_layer for details.
Z
zhangjinchao01 已提交
269
    :type act: BaseActivation
270
    :param groups: see img_conv_layer for details.
Z
zhangjinchao01 已提交
271
    :type groups: int
272
    :param conv_stride: see img_conv_layer for details.
Z
zhangjinchao01 已提交
273
    :type conv_stride: int
274
    :param conv_padding: see img_conv_layer for details.
Z
zhangjinchao01 已提交
275
    :type conv_padding: int
276
    :param conv_bias_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
277
    :type conv_bias_attr: ParameterAttribute
278
    :param num_channel: see img_conv_layer for details.
Z
zhangjinchao01 已提交
279
    :type num_channel: int
280
    :param conv_param_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
281
    :type conv_param_attr: ParameterAttribute
282
    :param shared_bias: see img_conv_layer for details.
Z
zhangjinchao01 已提交
283
    :type shared_bias: bool
284
    :param conv_layer_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
285
    :type conv_layer_attr: ExtraLayerOutput
286 287 288 289 290 291 292
    :param bn_param_attr: see batch_norm_layer for details.
    :type bn_param_attr: ParameterAttribute
    :param bn_bias_attr: see batch_norm_layer for details.
    :type bn_bias_attr: ParameterAttribute
    :param bn_layer_attr: see batch_norm_layer for details.
    :type bn_layer_attr: ExtraLayerAttribute
    :param pool_stride: see img_pool_layer for details.
Z
zhangjinchao01 已提交
293
    :type pool_stride: int
294
    :param pool_padding: see img_pool_layer for details.
Z
zhangjinchao01 已提交
295
    :type pool_padding: int
296
    :param pool_layer_attr: see img_pool_layer for details.
Z
zhangjinchao01 已提交
297
    :type pool_layer_attr: ExtraLayerAttribute
298
    :return: layer's output
Z
zhangjinchao01 已提交
299 300
    :rtype: LayerOutput
    """
Q
qijun 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    __conv__ = img_conv_layer(
        name="%s_conv" % name,
        input=input,
        filter_size=filter_size,
        num_filters=num_filters,
        num_channels=num_channel,
        act=LinearActivation(),
        groups=groups,
        stride=conv_stride,
        padding=conv_padding,
        bias_attr=conv_bias_attr,
        param_attr=conv_param_attr,
        shared_biases=shared_bias,
        layer_attr=conv_layer_attr)
    __bn__ = batch_norm_layer(
        name="%s_bn" % name,
        input=__conv__,
        act=act,
        bias_attr=bn_bias_attr,
        param_attr=bn_param_attr,
        layer_attr=bn_layer_attr)
    return img_pool_layer(
        name="%s_pool" % name,
        input=__bn__,
        pool_type=pool_type,
        pool_size=pool_size,
        stride=pool_stride,
        padding=pool_padding,
        layer_attr=pool_layer_attr)


@wrap_act_default(param_names=['conv_act'], act=ReluActivation())
@wrap_param_default(
    param_names=['pool_type'], default_factory=lambda _: MaxPooling())
def img_conv_group(input,
                   conv_num_filter,
Z
zhangjinchao01 已提交
337 338 339 340 341 342 343 344
                   pool_size,
                   num_channels=None,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
                   conv_with_batchnorm=False,
                   conv_batchnorm_drop_rate=0,
                   pool_stride=1,
Z
zlx 已提交
345 346
                   pool_type=None,
                   param_attr=None):
Z
zhangjinchao01 已提交
347 348 349
    """
    Image Convolution Group, Used for vgg net.

Z
zlx 已提交
350 351 352
    :param conv_batchnorm_drop_rate: if conv_with_batchnorm[i] is true,
        conv_batchnorm_drop_rate[i] represents the drop rate of each batch norm.
    :type conv_batchnorm_drop_rate: list
353
    :param input: input layer.
Z
zlx 已提交
354
    :type input: LayerOutput
355 356
    :param conv_num_filter: list of output channels num.
    :type conv_num_filter: list|tuple
Z
zlx 已提交
357 358 359 360 361 362 363 364 365 366
    :param pool_size: pooling filter size.
    :type pool_size: int
    :param num_channels: input channels num.
    :type num_channels: int
    :param conv_padding: convolution padding size.
    :type conv_padding: int
    :param conv_filter_size: convolution filter size.
    :type conv_filter_size: int
    :param conv_act: activation funciton after convolution.
    :type conv_act: BaseActivation
367 368
    :param conv_with_batchnorm: if conv_with_batchnorm[i] is true,
        there is a batch normalization operation after each convolution.
Z
zlx 已提交
369 370 371 372 373
    :type conv_with_batchnorm: list
    :param pool_stride: pooling stride size.
    :type pool_stride: int
    :param pool_type: pooling type.
    :type pool_type: BasePoolingType
374 375
    :param param_attr: param attribute of convolution layer,
                       None means default attribute.
Z
zlx 已提交
376
    :type param_attr: ParameterAttribute
377 378
    :return: layer's output
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    """
    tmp = input

    # Type checks
    assert isinstance(tmp, LayerOutput)
    assert isinstance(conv_num_filter, list) or isinstance(conv_num_filter,
                                                           tuple)
    for each_num_filter in conv_num_filter:
        assert isinstance(each_num_filter, int)

    assert isinstance(pool_size, int)

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
    conv_act = __extend_list__(conv_act)
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

    for i in xrange(len(conv_num_filter)):
        extra_kwargs = dict()
        if num_channels is not None:
            extra_kwargs['num_channels'] = num_channels
            num_channels = None
        if conv_with_batchnorm[i]:
            extra_kwargs['act'] = LinearActivation()
        else:
            extra_kwargs['act'] = conv_act[i]

Q
qijun 已提交
413 414 415 416 417
        tmp = img_conv_layer(
            input=tmp,
            padding=conv_padding[i],
            filter_size=conv_filter_size[i],
            num_filters=conv_num_filter[i],
Z
zlx 已提交
418
            param_attr=param_attr,
Q
qijun 已提交
419
            **extra_kwargs)
Z
zhangjinchao01 已提交
420 421 422 423 424 425 426 427

        # logger.debug("tmp.num_filters = %d" % tmp.num_filters)

        if conv_with_batchnorm[i]:
            dropout = conv_batchnorm_drop_rate[i]
            if dropout == 0 or abs(dropout) < 1e-5:  # dropout not set
                tmp = batch_norm_layer(input=tmp, act=conv_act[i])
            else:
Q
qijun 已提交
428 429 430 431
                tmp = batch_norm_layer(
                    input=tmp,
                    act=conv_act[i],
                    layer_attr=ExtraAttr(drop_rate=dropout))
Z
zhangjinchao01 已提交
432

Q
qijun 已提交
433 434
    return img_pool_layer(
        input=tmp, stride=pool_stride, pool_size=pool_size, pool_type=pool_type)
Z
zhangjinchao01 已提交
435 436 437 438


def small_vgg(input_image, num_channels, num_classes):
    def __vgg__(ipt, num_filter, times, dropouts, num_channels_=None):
Q
qijun 已提交
439 440 441 442 443 444 445 446 447 448 449
        return img_conv_group(
            input=ipt,
            num_channels=num_channels_,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * times,
            conv_filter_size=3,
            conv_act=ReluActivation(),
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type=MaxPooling())
Z
zhangjinchao01 已提交
450 451 452 453 454

    tmp = __vgg__(input_image, 64, 2, [0.3, 0], num_channels)
    tmp = __vgg__(tmp, 128, 2, [0.4, 0])
    tmp = __vgg__(tmp, 256, 3, [0.4, 0.4, 0])
    tmp = __vgg__(tmp, 512, 3, [0.4, 0.4, 0])
Q
qijun 已提交
455 456
    tmp = img_pool_layer(
        input=tmp, stride=2, pool_size=2, pool_type=MaxPooling())
Z
zhangjinchao01 已提交
457
    tmp = dropout_layer(input=tmp, dropout_rate=0.5)
Q
qijun 已提交
458 459 460 461 462
    tmp = fc_layer(
        input=tmp,
        size=512,
        layer_attr=ExtraAttr(drop_rate=0.5),
        act=LinearActivation())
Z
zhangjinchao01 已提交
463 464 465 466 467 468 469 470
    tmp = batch_norm_layer(input=tmp, act=ReluActivation())
    return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())


def vgg_16_network(input_image, num_channels, num_classes=1000):
    """
    Same model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8

471 472 473
    :param num_classes: number of class.
    :type num_classes: int
    :param input_image: input layer.
Z
zhangjinchao01 已提交
474
    :type input_image: LayerOutput
475
    :param num_channels: input channels num.
Z
zhangjinchao01 已提交
476
    :type num_channels: int
477 478
    :return: layer's output
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
479 480
    """

Q
qijun 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    tmp = img_conv_group(
        input=input_image,
        num_channels=num_channels,
        conv_padding=1,
        conv_num_filter=[64, 64],
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_size=2,
        pool_stride=2,
        pool_type=MaxPooling())

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[128, 128],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[256, 256, 256],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[512, 512, 512],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)
    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[512, 512, 512],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = fc_layer(
        input=tmp,
        size=4096,
        act=ReluActivation(),
        layer_attr=ExtraAttr(drop_rate=0.5))

    tmp = fc_layer(
        input=tmp,
        size=4096,
        act=ReluActivation(),
        layer_attr=ExtraAttr(drop_rate=0.5))
Z
zhangjinchao01 已提交
542 543 544 545 546 547 548 549

    return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())


############################################################################
#                       Recurrent                                          #
############################################################################

Q
qijun 已提交
550

Z
zhangjinchao01 已提交
551
@wrap_name_default("lstm")
Q
qijun 已提交
552 553 554 555 556 557 558 559 560 561 562
def simple_lstm(input,
                size,
                name=None,
                reverse=False,
                mat_param_attr=None,
                bias_param_attr=None,
                inner_param_attr=None,
                act=None,
                gate_act=None,
                state_act=None,
                mixed_layer_attr=None,
Z
zhangjinchao01 已提交
563 564 565 566
                lstm_cell_attr=None):
    """
    Simple LSTM Cell.

567 568
    It just combines a mixed layer with fully_matrix_projection and a lstmemory
    layer. The simple lstm cell was implemented with follow equations.
Z
zhangjinchao01 已提交
569 570 571

    ..  math::

L
luotao02 已提交
572
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
573

L
luotao02 已提交
574
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
575

L
luotao02 已提交
576
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
577

L
luotao02 已提交
578
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
579

L
luotao02 已提交
580
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
581

582 583
    Please refer to **Generating Sequences With Recurrent Neural Networks** for more
    details about lstm. Link_ is here.
Z
zhangjinchao01 已提交
584 585 586 587 588

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: lstm layer name.
    :type name: basestring
589
    :param input: layer's input.
Z
zhangjinchao01 已提交
590 591 592
    :type input: LayerOutput
    :param size: lstm layer size.
    :type size: int
593
    :param reverse: process the input in a reverse order or not.
Z
zhangjinchao01 已提交
594
    :type reverse: bool
595
    :param mat_param_attr: parameter attribute of matrix projection in mixed layer.
Z
zhangjinchao01 已提交
596 597 598 599
    :type mat_param_attr: ParameterAttribute
    :param bias_param_attr: bias parameter attribute. False means no bias, None
                            means default bias.
    :type bias_param_attr: ParameterAttribute|False
600
    :param inner_param_attr: parameter attribute of lstm cell.
Z
zhangjinchao01 已提交
601
    :type inner_param_attr: ParameterAttribute
602
    :param act: last activiation type of lstm.
Z
zhangjinchao01 已提交
603
    :type act: BaseActivation
604
    :param gate_act: gate activiation type of lstm.
Z
zhangjinchao01 已提交
605
    :type gate_act: BaseActivation
606
    :param state_act: state activiation type of lstm.
Z
zhangjinchao01 已提交
607
    :type state_act: BaseActivation
608
    :param mixed_layer_attr: extra attribute of mixed layer.
Z
zhangjinchao01 已提交
609
    :type mixed_layer_attr: ExtraLayerAttribute
610
    :param lstm_cell_attr: extra attribute of lstm.
Z
zhangjinchao01 已提交
611
    :type lstm_cell_attr: ExtraLayerAttribute
612
    :return: layer's output.
Z
zhangjinchao01 已提交
613 614 615
    :rtype: LayerOutput
    """
    fc_name = 'lstm_transform_%s' % name
Q
qijun 已提交
616 617 618 619 620 621
    with mixed_layer(
            name=fc_name,
            size=size * 4,
            act=IdentityActivation(),
            layer_attr=mixed_layer_attr,
            bias_attr=False) as m:
Z
zhangjinchao01 已提交
622 623
        m += full_matrix_projection(input, param_attr=mat_param_attr)

Q
qijun 已提交
624 625 626 627 628 629 630 631 632 633
    return lstmemory(
        name=name,
        input=m,
        reverse=reverse,
        bias_attr=bias_param_attr,
        param_attr=inner_param_attr,
        act=act,
        gate_act=gate_act,
        state_act=state_act,
        layer_attr=lstm_cell_attr)
Z
zhangjinchao01 已提交
634 635 636


@wrap_name_default('lstm_unit')
Q
qijun 已提交
637
def lstmemory_unit(input,
638
                   out_memory=None,
Q
qijun 已提交
639 640 641 642 643 644
                   name=None,
                   size=None,
                   param_attr=None,
                   act=None,
                   gate_act=None,
                   state_act=None,
645 646
                   input_proj_bias_attr=None,
                   input_proj_layer_attr=None,
Q
qijun 已提交
647
                   lstm_bias_attr=None,
648
                   lstm_layer_attr=None):
Z
zhangjinchao01 已提交
649
    """
650 651 652
    lstmemory_unit defines the caculation process of a LSTM unit during a 
    single time step. This function is not a recurrent layer, so it can not be
    directly used to process sequence input. This function is always used in
C
caoying03 已提交
653 654 655 656 657 658 659 660 661
    recurrent_group (see layers.py for more details) to implement attention
    mechanism.

    Please refer to  **Generating Sequences With Recurrent Neural Networks**
    for more details about LSTM. The link goes as follows:
    .. _Link: https://arxiv.org/abs/1308.0850

    ..  math::

662
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
C
caoying03 已提交
663

664
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
C
caoying03 已提交
665

666
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
C
caoying03 已提交
667

668
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
C
caoying03 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681

        h_t & = o_t tanh(c_t)

    The example usage is:

    ..  code-block:: python

        lstm_step = lstmemory_unit(input=[layer1],
                                   size=256,
                                   act=TanhActivation(),
                                   gate_act=SigmoidActivation(),
                                   state_act=TanhActivation())

Z
zhangjinchao01 已提交
682

683
    :param input: input layer.
L
luotao02 已提交
684
    :type input: LayerOutput
685 686
    :param out_memory: output of previous time step
    :type out_memory: LayerOutput | None
L
luotao02 已提交
687 688 689 690
    :param name: lstmemory unit name.
    :type name: basestring
    :param size: lstmemory unit size.
    :type size: int
691
    :param param_attr: parameter attribute, None means default attribute.
L
luotao02 已提交
692
    :type param_attr: ParameterAttribute
693
    :param act: last activiation type of lstm.
L
luotao02 已提交
694
    :type act: BaseActivation
695
    :param gate_act: gate activiation type of lstm.
L
luotao02 已提交
696
    :type gate_act: BaseActivation
697
    :param state_act: state activiation type of lstm.
L
luotao02 已提交
698
    :type state_act: BaseActivation
699
    :param input_proj_bias_attr: bias attribute for input to hidden projection.
700 701 702 703 704
                False means no bias, None means default bias.
    :type input_proj_bias_attr: ParameterAttribute|False|None
    :param input_proj_layer_attr: extra layer attribute for input to hidden
                projection of the LSTM unit, such as dropout, error clipping.
    :type input_proj_layer_attr: ExtraLayerAttribute
L
luotao02 已提交
705
    :param lstm_bias_attr: bias parameter attribute of lstm layer.
706
                False means no bias, None means default bias.
707 708
    :type lstm_bias_attr: ParameterAttribute|False|None
    :param lstm_layer_attr: extra attribute of lstm layer.
L
luotao02 已提交
709 710 711
    :type lstm_layer_attr: ExtraLayerAttribute
    :return: lstmemory unit name.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
712 713 714 715
    """
    if size is None:
        assert input.size % 4 == 0
        size = input.size / 4
716 717 718 719 720
    if out_memory is None:
        out_mem = memory(name=name, size=size)
    else:
        out_mem = out_memory

Z
zhangjinchao01 已提交
721 722
    state_mem = memory(name="%s_state" % name, size=size)

Q
qijun 已提交
723 724 725
    with mixed_layer(
            name="%s_input_recurrent" % name,
            size=size * 4,
726 727
            bias_attr=input_proj_bias_attr,
            layer_attr=input_proj_layer_attr,
Q
qijun 已提交
728
            act=IdentityActivation()) as m:
Z
zhangjinchao01 已提交
729 730 731 732 733 734 735 736 737 738 739 740
        m += identity_projection(input=input)
        m += full_matrix_projection(input=out_mem, param_attr=param_attr)

    lstm_out = lstm_step_layer(
        name=name,
        input=m,
        state=state_mem,
        size=size,
        bias_attr=lstm_bias_attr,
        act=act,
        gate_act=gate_act,
        state_act=state_act,
Q
qijun 已提交
741
        layer_attr=lstm_layer_attr)
742
    get_output_layer(name='%s_state' % name, input=lstm_out, arg_name='state')
Z
zhangjinchao01 已提交
743 744 745 746 747

    return lstm_out


@wrap_name_default('lstm_group')
Q
qijun 已提交
748 749 750
def lstmemory_group(input,
                    size=None,
                    name=None,
751
                    out_memory=None,
Q
qijun 已提交
752 753 754 755 756
                    reverse=False,
                    param_attr=None,
                    act=None,
                    gate_act=None,
                    state_act=None,
757 758
                    input_proj_bias_attr=None,
                    input_proj_layer_attr=None,
Q
qijun 已提交
759
                    lstm_bias_attr=None,
760
                    lstm_layer_attr=None):
Z
zhangjinchao01 已提交
761
    """
762
    lstm_group is a recurrent_group version of Long Short Term Memory. It
C
caoying03 已提交
763 764
    does exactly the same calculation as the lstmemory layer (see lstmemory in
    layers.py for the maths) does. A promising benefit is that LSTM memory
765
    cell states(or hidden states) in every time step are accessible to the
C
caoying03 已提交
766
    user. This is especially useful in attention model. If you do not need to
767
    access the internal states of the lstm and merely use its outputs,
768
    it is recommended to use the lstmemory, which is relatively faster than
C
caoying03 已提交
769 770 771 772
    lstmemory_group.

    NOTE: In PaddlePaddle's implementation, the following input-to-hidden
    multiplications:
773 774
    :math:`W_{x_i}x_{t}` , :math:`W_{x_f}x_{t}`,
    :math:`W_{x_c}x_t`, :math:`W_{x_o}x_{t}` are not done in lstmemory_unit to
C
caoying03 已提交
775 776 777 778 779 780 781 782 783 784 785 786
    speed up the calculations. Consequently, an additional mixed_layer with
    full_matrix_projection must be included before lstmemory_unit is called.

    The example usage is:

    ..  code-block:: python

        lstm_step = lstmemory_group(input=[layer1],
                                    size=256,
                                    act=TanhActivation(),
                                    gate_act=SigmoidActivation(),
                                    state_act=TanhActivation())
Z
zhangjinchao01 已提交
787

788
    :param input: input layer.
L
luotao02 已提交
789 790 791
    :type input: LayerOutput
    :param size: lstmemory group size.
    :type size: int
792
    :param name: name of lstmemory group.
L
luotao02 已提交
793
    :type name: basestring
794
    :param out_memory: output of previous time step.
795
    :type out_memory: LayerOutput | None
796
    :param reverse: process the input in a reverse order or not.
L
luotao02 已提交
797
    :type reverse: bool
798
    :param param_attr: parameter attribute, None means default attribute.
L
luotao02 已提交
799
    :type param_attr: ParameterAttribute
800
    :param act: last activiation type of lstm.
L
luotao02 已提交
801
    :type act: BaseActivation
802
    :param gate_act: gate activiation type of lstm.
L
luotao02 已提交
803
    :type gate_act: BaseActivation
804
    :param state_act: state activiation type of lstm.
L
luotao02 已提交
805 806 807
    :type state_act: BaseActivation
    :param lstm_bias_attr: bias parameter attribute of lstm layer.
                           False means no bias, None means default bias.
808 809
    :type lstm_bias_attr: ParameterAttribute|False|None
    :param input_proj_bias_attr: bias attribute for input to hidden projection.
810 811 812 813 814
                False means no bias, None means default bias.
    :type input_proj_bias_attr: ParameterAttribute|False|None
    :param input_proj_layer_attr: extra layer attribute for input to hidden
                projection of the LSTM unit, such as dropout, error clipping.
    :type input_proj_layer_attr: ExtraLayerAttribute
L
luotao02 已提交
815 816
    :param lstm_layer_attr: lstm layer's extra attribute.
    :type lstm_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
817
    :return: the lstmemory group.
L
luotao02 已提交
818
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
819 820 821
    """

    def __lstm_step__(ipt):
Q
qijun 已提交
822 823 824 825 826 827 828
        return lstmemory_unit(
            input=ipt,
            name=name,
            size=size,
            act=act,
            gate_act=gate_act,
            state_act=state_act,
829 830 831 832
            out_memory=out_memory,
            input_proj_bias_attr=input_proj_bias_attr,
            input_proj_layer_attr=input_proj_layer_attr,
            param_attr=param_attr,
Q
qijun 已提交
833
            lstm_layer_attr=lstm_layer_attr,
834
            lstm_bias_attr=lstm_bias_attr)
Q
qijun 已提交
835 836 837 838 839 840

    return recurrent_group(
        name='%s_recurrent_group' % name,
        step=__lstm_step__,
        reverse=reverse,
        input=input)
Z
zhangjinchao01 已提交
841 842 843 844


@wrap_name_default('gru_unit')
def gru_unit(input,
845
             memory_boot=None,
Z
zhangjinchao01 已提交
846 847 848
             size=None,
             name=None,
             gru_bias_attr=None,
W
wangyang59 已提交
849
             gru_param_attr=None,
Z
zhangjinchao01 已提交
850 851
             act=None,
             gate_act=None,
Y
Yu Yang 已提交
852 853
             gru_layer_attr=None,
             naive=False):
Z
zhangjinchao01 已提交
854
    """
855 856 857
    gru_unit defines the calculation process of a gated recurrent unit during a single 
    time step. This function is not a recurrent layer, so it can not be
    directly used to process sequence input. This function is always used in
C
caoying03 已提交
858 859
    the recurrent_group (see layers.py for more details) to implement attention
    mechanism.
Z
zhangjinchao01 已提交
860

C
caoying03 已提交
861 862
    Please see grumemory in layers.py for the details about the maths.

863
    :param input: input layer.
Z
zhangjinchao01 已提交
864
    :type input: LayerOutput
865 866
    :param memory_boot: the initialization state of the LSTM cell.
    :type memory_boot: LayerOutput | None
C
caoying03 已提交
867 868 869 870
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
871
    :param act: activation type of gru
C
caoying03 已提交
872
    :type act: BaseActivation
873
    :param gate_act: gate activation type or gru
C
caoying03 已提交
874
    :type gate_act: BaseActivation
875 876
    :param gru_layer_attr: Extra attribute of the gru layer.
    :type gru_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
877 878
    :return: the gru output layer.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
879 880 881 882 883 884
    """

    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3

885
    out_mem = memory(name=name, size=size, boot_layer=memory_boot)
Z
zhangjinchao01 已提交
886

Y
Yu Yang 已提交
887 888 889 890 891 892
    if naive:
        __step__ = gru_step_naive_layer
    else:
        __step__ = gru_step_layer

    gru_out = __step__(
Z
zhangjinchao01 已提交
893 894 895 896 897
        name=name,
        input=input,
        output_mem=out_mem,
        size=size,
        bias_attr=gru_bias_attr,
W
wangyang59 已提交
898
        param_attr=gru_param_attr,
Z
zhangjinchao01 已提交
899 900
        act=act,
        gate_act=gate_act,
Q
qijun 已提交
901
        layer_attr=gru_layer_attr)
Z
zhangjinchao01 已提交
902 903 904 905 906
    return gru_out


@wrap_name_default('gru_group')
def gru_group(input,
907
              memory_boot=None,
Z
zhangjinchao01 已提交
908 909 910 911
              size=None,
              name=None,
              reverse=False,
              gru_bias_attr=None,
W
wangyang59 已提交
912
              gru_param_attr=None,
Q
qijun 已提交
913 914
              act=None,
              gate_act=None,
Y
Yu Yang 已提交
915 916
              gru_layer_attr=None,
              naive=False):
C
caoying03 已提交
917
    """
918
    gru_group is a recurrent_group version of Gated Recurrent Unit. It
C
caoying03 已提交
919
    does exactly the same calculation as the grumemory layer does. A promising
920 921
    benefit is that gru hidden states are accessible to the user. This is
    especially useful in attention model. If you do not need to access
922
    any internal state and merely use the outputs of a GRU, it is recommended
C
caoying03 已提交
923 924 925 926 927 928 929 930
    to use the grumemory, which is relatively faster.

    Please see grumemory in layers.py for more detail about the maths.

    The example usage is:

    ..  code-block:: python

931
        gru = gru_group(input=[layer1],
C
caoying03 已提交
932 933 934 935
                        size=256,
                        act=TanhActivation(),
                        gate_act=SigmoidActivation())

936
    :param input: input layer.
C
caoying03 已提交
937
    :type input: LayerOutput
938 939
    :param memory_boot: the initialization state of the LSTM cell.
    :type memory_boot: LayerOutput | None
C
caoying03 已提交
940 941 942 943
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
944
    :param reverse: process the input in a reverse order or not.
C
caoying03 已提交
945
    :type reverse: bool
946
    :param act: activiation type of gru
C
caoying03 已提交
947
    :type act: BaseActivation
948
    :param gate_act: gate activiation type of gru
C
caoying03 已提交
949
    :type gate_act: BaseActivation
950 951 952 953 954
    :param gru_bias_attr: bias parameter attribute of gru layer,
                          False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False|None
    :param gru_layer_attr: Extra attribute of the gru layer.
    :type gru_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
955 956 957 958
    :return: the gru group.
    :rtype: LayerOutput
    """

Z
zhangjinchao01 已提交
959 960 961
    def __gru_step__(ipt):
        return gru_unit(
            input=ipt,
962
            memory_boot=memory_boot,
Z
zhangjinchao01 已提交
963 964 965
            name=name,
            size=size,
            gru_bias_attr=gru_bias_attr,
W
wangyang59 已提交
966
            gru_param_attr=gru_param_attr,
Z
zhangjinchao01 已提交
967 968
            act=act,
            gate_act=gate_act,
Y
Yu Yang 已提交
969 970
            gru_layer_attr=gru_layer_attr,
            naive=naive)
Z
zhangjinchao01 已提交
971

Q
qijun 已提交
972 973 974 975 976
    return recurrent_group(
        name='%s_recurrent_group' % name,
        step=__gru_step__,
        reverse=reverse,
        input=input)
Z
zhangjinchao01 已提交
977 978 979 980 981 982 983 984 985 986 987


@wrap_name_default('simple_gru')
def simple_gru(input,
               size,
               name=None,
               reverse=False,
               mixed_param_attr=None,
               mixed_bias_param_attr=None,
               mixed_layer_attr=None,
               gru_bias_attr=None,
W
wangyang59 已提交
988
               gru_param_attr=None,
Z
zhangjinchao01 已提交
989 990
               act=None,
               gate_act=None,
Y
Yu Yang 已提交
991 992
               gru_layer_attr=None,
               naive=False):
C
caoying03 已提交
993
    """
994
    You may see gru_step_layer, grumemory in layers.py, gru_unit, gru_group,
995 996 997
    simple_gru in network.py. The reason why there are so many interfaces is
    that we have two ways to implement recurrent neural network. One way is to
    use one complete layer to implement rnn (including simple rnn, gru and lstm)
998
    with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But 
999
    the multiplication operation :math:`W x_t` is not computed in these layers.
1000
    See details in their interfaces in layers.py.
1001 1002 1003 1004 1005 1006
    The other implementation is to use an recurrent group which can ensemble a
    series of layers to compute rnn step by step. This way is flexible for
    attenion mechanism or other complex connections.

    - gru_step_layer: only compute rnn by one step. It needs an memory as input
      and can be used in recurrent group.
1007
    - gru_unit: a wrapper of gru_step_layer with memory.
1008 1009
    - gru_group: a GRU cell implemented by a combination of multiple layers in
      recurrent group.
1010
      But :math:`W x_t` is not done in group.
1011
    - gru_memory: a GRU cell implemented by one layer, which does same calculation
1012 1013
      with gru_group and is faster than gru_group.
    - simple_gru: a complete GRU implementation inlcuding :math:`W x_t` and
1014
      gru_group. :math:`W` contains :math:`W_r`, :math:`W_z` and :math:`W`, see
1015
      formula in grumemory.
1016

C
caoying03 已提交
1017 1018 1019 1020 1021 1022 1023
    The computational speed is that, grumemory is relatively better than
    gru_group, and gru_group is relatively better than simple_gru.

    The example usage is:

    ..  code-block:: python

1024
        gru = simple_gru(input=[layer1], size=256)
C
caoying03 已提交
1025

1026
    :param input: input layer.
C
caoying03 已提交
1027 1028 1029 1030 1031
    :type input: LayerOutput
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
1032
    :param reverse: process the input in a reverse order or not.
C
caoying03 已提交
1033
    :type reverse: bool
1034
    :param act: activiation type of gru
C
caoying03 已提交
1035
    :type act: BaseActivation
1036
    :param gate_act: gate activiation type of gru
C
caoying03 已提交
1037
    :type gate_act: BaseActivation
1038 1039 1040 1041 1042
    :param gru_bias_attr: bias parameter attribute of gru layer,
                          False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False|None
    :param gru_layer_attr: Extra attribute of the gru layer.
    :type gru_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
1043 1044 1045
    :return: the gru group.
    :rtype: LayerOutput
    """
Q
qijun 已提交
1046 1047 1048 1049 1050
    with mixed_layer(
            name='%s_transform' % name,
            size=size * 3,
            bias_attr=mixed_bias_param_attr,
            layer_attr=mixed_layer_attr) as m:
Z
zhangjinchao01 已提交
1051 1052
        m += full_matrix_projection(input=input, param_attr=mixed_param_attr)

Q
qijun 已提交
1053 1054 1055 1056 1057 1058
    return gru_group(
        name=name,
        size=size,
        input=m,
        reverse=reverse,
        gru_bias_attr=gru_bias_attr,
W
wangyang59 已提交
1059
        gru_param_attr=gru_param_attr,
Q
qijun 已提交
1060 1061
        act=act,
        gate_act=gate_act,
Y
Yu Yang 已提交
1062 1063
        gru_layer_attr=gru_layer_attr,
        naive=naive)
Z
zhangjinchao01 已提交
1064 1065


1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
@wrap_name_default('simple_gru2')
def simple_gru2(input,
                size,
                name=None,
                reverse=False,
                mixed_param_attr=None,
                mixed_bias_attr=None,
                gru_param_attr=None,
                gru_bias_attr=None,
                act=None,
                gate_act=None,
                mixed_layer_attr=None,
Q
qijun 已提交
1078
                gru_cell_attr=None):
1079
    """
1080 1081
    simple_gru2 is the same with simple_gru, but using grumemory instead.
    Please refer to grumemory in layers.py for more detail about the math.
1082 1083 1084 1085 1086 1087 1088 1089
    simple_gru2 is faster than simple_gru.

    The example usage is:

    ..  code-block:: python

        gru = simple_gru2(input=[layer1], size=256)

1090
    :param input: input layer.
1091 1092 1093 1094 1095
    :type input: LayerOutput
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
1096
    :param reverse: process the input in a reverse order or not.
1097
    :type reverse: bool
1098
    :param act: activiation type of gru
1099
    :type act: BaseActivation
1100
    :param gate_act: gate activiation type of gru
1101
    :type gate_act: BaseActivation
1102 1103 1104 1105 1106
    :param gru_bias_attr: bias parameter attribute of gru layer, 
                          False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False|None
    :param gru_layer_attr: Extra attribute of the gru layer.
    :type gru_layer_attr: ExtraLayerAttribute
1107 1108 1109
    :return: the gru group.
    :rtype: LayerOutput
    """
Q
qijun 已提交
1110 1111 1112 1113 1114
    with mixed_layer(
            name='%s_transform' % name,
            size=size * 3,
            bias_attr=mixed_bias_attr,
            layer_attr=mixed_layer_attr) as m:
1115 1116
        m += full_matrix_projection(input=input, param_attr=mixed_param_attr)

Q
qijun 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125
    return grumemory(
        name=name,
        input=m,
        reverse=reverse,
        bias_attr=gru_bias_attr,
        param_attr=gru_param_attr,
        act=act,
        gate_act=gate_act,
        layer_attr=gru_cell_attr)
1126 1127 1128


@wrap_name_default("bidirectional_gru")
Q
qijun 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
def bidirectional_gru(input,
                      size,
                      name=None,
                      return_seq=False,
                      fwd_mixed_param_attr=None,
                      fwd_mixed_bias_attr=None,
                      fwd_gru_param_attr=None,
                      fwd_gru_bias_attr=None,
                      fwd_act=None,
                      fwd_gate_act=None,
                      fwd_mixed_layer_attr=None,
                      fwd_gru_cell_attr=None,
                      bwd_mixed_param_attr=None,
                      bwd_mixed_bias_attr=None,
                      bwd_gru_param_attr=None,
                      bwd_gru_bias_attr=None,
                      bwd_act=None,
                      bwd_gate_act=None,
                      bwd_mixed_layer_attr=None,
                      bwd_gru_cell_attr=None,
                      last_seq_attr=None,
                      first_seq_attr=None,
                      concat_attr=None,
                      concat_act=None):
1153 1154
    """
    A bidirectional_gru is a recurrent unit that iterates over the input
1155
    sequence both in forward and backward orders, and then concatenate two
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
    outputs to form a final output. However, concatenation of two outputs
    is not the only way to form the final output, you can also, for example,
    just add them together.

    The example usage is:

    ..  code-block:: python

        bi_gru = bidirectional_gru(input=[input1], size=512)

    :param name: bidirectional gru layer name.
    :type name: basestring
    :param input: input layer.
    :type input: LayerOutput
    :param size: gru layer size.
    :type size: int
1172
    :param return_seq: If set False, the last time step of output are
1173
                       concatenated and returned.
1174 1175
                       If set True, the entire output sequences in forward 
                       and backward directions are concatenated and returned.
1176 1177 1178 1179 1180 1181
    :type return_seq: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    args = locals()

Q
qijun 已提交
1182 1183 1184 1185 1186 1187
    fw = simple_gru2(
        name='%s_fw' % name,
        input=input,
        size=size,
        **dict((k[len('fwd_'):], v) for k, v in args.iteritems()
               if k.startswith('fwd_')))
1188

Q
qijun 已提交
1189 1190 1191 1192 1193 1194 1195
    bw = simple_gru2(
        name="%s_bw" % name,
        input=input,
        size=size,
        reverse=True,
        **dict((k[len('bwd_'):], v) for k, v in args.iteritems()
               if k.startswith('bwd_')))
1196 1197

    if return_seq:
Q
qijun 已提交
1198 1199
        return concat_layer(
            name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act)
1200
    else:
Q
qijun 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209
        fw_seq = last_seq(
            name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr)
        bw_seq = first_seq(
            name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr)
        return concat_layer(
            name=name,
            input=[fw_seq, bw_seq],
            layer_attr=concat_attr,
            act=concat_act)
1210 1211


Z
zhangjinchao01 已提交
1212
@wrap_name_default("bidirectional_lstm")
Q
qijun 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
def bidirectional_lstm(input,
                       size,
                       name=None,
                       return_seq=False,
                       fwd_mat_param_attr=None,
                       fwd_bias_param_attr=None,
                       fwd_inner_param_attr=None,
                       fwd_act=None,
                       fwd_gate_act=None,
                       fwd_state_act=None,
                       fwd_mixed_layer_attr=None,
                       fwd_lstm_cell_attr=None,
                       bwd_mat_param_attr=None,
                       bwd_bias_param_attr=None,
                       bwd_inner_param_attr=None,
                       bwd_act=None,
                       bwd_gate_act=None,
                       bwd_state_act=None,
                       bwd_mixed_layer_attr=None,
                       bwd_lstm_cell_attr=None,
                       last_seq_attr=None,
                       first_seq_attr=None,
                       concat_attr=None,
                       concat_act=None):
Z
zhangjinchao01 已提交
1237
    """
C
caoying03 已提交
1238
    A bidirectional_lstm is a recurrent unit that iterates over the input
1239 1240
    sequence both in forward and backward orders, and then concatenate two
    outputs to form a final output. However, concatenation of two outputs
C
caoying03 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    is not the only way to form the final output, you can also, for example,
    just add them together.

    Please refer to  **Neural Machine Translation by Jointly Learning to Align
    and Translate** for more details about the bidirectional lstm.
    The link goes as follows:
    .. _Link: https://arxiv.org/pdf/1409.0473v3.pdf

    The example usage is:

    ..  code-block:: python

1253
        bi_lstm = bidirectional_lstm(input=[input1], size=512)
Z
zhangjinchao01 已提交
1254 1255 1256 1257 1258 1259 1260

    :param name: bidirectional lstm layer name.
    :type name: basestring
    :param input: input layer.
    :type input: LayerOutput
    :param size: lstm layer size.
    :type size: int
1261
    :param return_seq: If set False, the last time step of output are
C
caoying03 已提交
1262
                       concatenated and returned.
1263 1264
                       If set True, the entire output sequences in forward 
                       and backward directions are concatenated and returned.
Z
zhangjinchao01 已提交
1265
    :type return_seq: bool
1266
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1267 1268 1269 1270
    :rtype: LayerOutput
    """
    args = locals()

Q
qijun 已提交
1271 1272 1273 1274 1275 1276
    fw = simple_lstm(
        name='%s_fw' % name,
        input=input,
        size=size,
        **dict((k[len('fwd_'):], v) for k, v in args.iteritems()
               if k.startswith('fwd_')))
Z
zhangjinchao01 已提交
1277

Q
qijun 已提交
1278 1279 1280 1281 1282 1283 1284
    bw = simple_lstm(
        name="%s_bw" % name,
        input=input,
        size=size,
        reverse=True,
        **dict((k[len('bwd_'):], v) for k, v in args.iteritems()
               if k.startswith('bwd_')))
Z
zhangjinchao01 已提交
1285 1286

    if return_seq:
Q
qijun 已提交
1287 1288
        return concat_layer(
            name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act)
Z
zhangjinchao01 已提交
1289
    else:
Q
qijun 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298
        fw_seq = last_seq(
            name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr)
        bw_seq = first_seq(
            name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr)
        return concat_layer(
            name=name,
            input=[fw_seq, bw_seq],
            layer_attr=concat_attr,
            act=concat_act)
Z
zhangjinchao01 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310


@wrap_name_default()
@wrap_act_default(param_names=['weight_act'], act=TanhActivation())
def simple_attention(encoded_sequence,
                     encoded_proj,
                     decoder_state,
                     transform_param_attr=None,
                     softmax_param_attr=None,
                     weight_act=None,
                     name=None):
    """
1311
    Calculate and return a context vector with attention mechanism.
1312
    Size of the context vector equals to size of the encoded_sequence.
Z
zhangjinchao01 已提交
1313 1314

    ..  math::
L
luotao02 已提交
1315 1316 1317 1318 1319

        a(s_{i-1},h_{j}) & = v_{a}f(W_{a}s_{t-1} + U_{a}h_{j})

        e_{i,j} & = a(s_{i-1}, h_{j})

1320
        a_{i,j} & = \\frac{exp(e_{i,j})}{\\sum_{k=1}^{T_x}{exp(e_{i,k})}}
L
luotao02 已提交
1321 1322

        c_{i} & = \\sum_{j=1}^{T_{x}}a_{i,j}h_{j}
Z
zhangjinchao01 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

    where :math:`h_{j}` is the jth element of encoded_sequence,
    :math:`U_{a}h_{j}` is the jth element of encoded_proj
    :math:`s_{i-1}` is decoder_state
    :math:`f` is weight_act, and is set to tanh by default.

    Please refer to **Neural Machine Translation by Jointly Learning to
    Align and Translate** for more details. The link is as follows:
    https://arxiv.org/abs/1409.0473.

    The example usage is:
L
luotao02 已提交
1334

Z
zhangjinchao01 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343
    ..  code-block:: python

        context = simple_attention(encoded_sequence=enc_seq,
                                   encoded_proj=enc_proj,
                                   decoder_state=decoder_prev,)

    :param name: name of the attention model.
    :type name: basestring
    :param softmax_param_attr: parameter attribute of sequence softmax
1344
                               that is used to produce attention weight.
Z
zhangjinchao01 已提交
1345
    :type softmax_param_attr: ParameterAttribute
1346 1347
    :param weight_act: activation of the attention model.
    :type weight_act: BaseActivation
Z
zhangjinchao01 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    :param encoded_sequence: output of the encoder
    :type encoded_sequence: LayerOutput
    :param encoded_proj: attention weight is computed by a feed forward neural
                         network which has two inputs : decoder's hidden state
                         of previous time step and encoder's output.
                         encoded_proj is output of the feed-forward network for
                         encoder's output. Here we pre-compute it outside
                         simple_attention for speed consideration.
    :type encoded_proj: LayerOutput
    :param decoder_state: hidden state of decoder in previous time step
    :type decoder_state: LayerOutput
    :param transform_param_attr: parameter attribute of the feed-forward
                                network that takes decoder_state as inputs to
                                compute attention weight.
    :type transform_param_attr: ParameterAttribute
    :return: a context vector
    """
    assert encoded_proj.size == decoder_state.size
    proj_size = encoded_proj.size

    with mixed_layer(size=proj_size, name="%s_transform" % name) as m:
Q
qijun 已提交
1369 1370
        m += full_matrix_projection(
            decoder_state, param_attr=transform_param_attr)
Z
zhangjinchao01 已提交
1371

Q
qijun 已提交
1372 1373
    expanded = expand_layer(
        input=m, expand_as=encoded_sequence, name='%s_expand' % name)
Z
zhangjinchao01 已提交
1374

Q
qijun 已提交
1375 1376
    with mixed_layer(
            size=proj_size, act=weight_act, name="%s_combine" % name) as m:
Z
zhangjinchao01 已提交
1377 1378 1379 1380 1381
        m += identity_projection(expanded)
        m += identity_projection(encoded_proj)

    # sequence softmax is used to normalize similarities between decoder state
    # and encoder outputs into a distribution
Q
qijun 已提交
1382 1383 1384 1385 1386 1387 1388
    attention_weight = fc_layer(
        input=m,
        size=1,
        act=SequenceSoftmaxActivation(),
        param_attr=softmax_param_attr,
        name="%s_softmax" % name,
        bias_attr=False)
Z
zhangjinchao01 已提交
1389

Q
qijun 已提交
1390 1391 1392 1393
    scaled = scaling_layer(
        weight=attention_weight,
        input=encoded_sequence,
        name='%s_scaling' % name)
Z
zhangjinchao01 已提交
1394

Q
qijun 已提交
1395 1396
    return pooling_layer(
        input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name)
Z
zhangjinchao01 已提交
1397 1398


1399 1400 1401 1402 1403 1404 1405 1406
def inputs(layers, *args):
    """
    Declare the inputs of network. The order of input should be as same as
    the data provider's return order.

    :param layers: Input Layers.
    :type layers: list|tuple|LayerOutput.
    :return:
Z
zhangjinchao01 已提交
1407 1408
    """

1409 1410 1411 1412
    if isinstance(layers, LayerOutput) or isinstance(layers, basestring):
        layers = [layers]
    if len(args) != 0:
        layers.extend(args)
Z
zhangjinchao01 已提交
1413

Z
Zhaolong Xing 已提交
1414
    Inputs(*[l.name for l in layers])
1415 1416 1417 1418


def outputs(layers, *args):
    """
1419
    Declare the outputs of network. If user has not defined the inputs of
1420 1421 1422
    network, this method will calculate the input order by dfs travel.

    :param layers: Output layers.
Z
zhangjinchao01 已提交
1423 1424 1425 1426
    :type layers: list|tuple|LayerOutput
    :return:
    """

1427 1428
    traveled = set()

Z
zhangjinchao01 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
    def __dfs_travel__(layer,
                       predicate=lambda x: x.layer_type == LayerType.DATA):
        """
        DFS LRV Travel for output layer.

        The return order is define order for data_layer in this leaf node.

        :param layer:
        :type layer: LayerOutput
        :return:
        """
1440 1441 1442 1443 1444
        if layer in traveled:
            return []
        else:
            traveled.add(layer)

Z
zhangjinchao01 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
        assert isinstance(layer, LayerOutput), "layer is %s" % (layer)
        retv = []
        if layer.parents is not None:
            for p in layer.parents:
                retv.extend(__dfs_travel__(p, predicate))

        if predicate(layer):
            retv.append(layer)
        return retv

    if isinstance(layers, LayerOutput):
        layers = [layers]

1458 1459 1460
    if len(args) != 0:
        layers.extend(args)

Z
zhangjinchao01 已提交
1461
    assert len(layers) > 0
1462 1463

    if HasInputsSet():  # input already set
Z
Zhaolong Xing 已提交
1464
        Outputs(*[l.name for l in layers])
1465 1466
        return  # just return outputs.

Z
zhangjinchao01 已提交
1467
    if len(layers) != 1:
1468
        logger.warning("`outputs` routine try to calculate network's"
Z
zhangjinchao01 已提交
1469 1470 1471 1472 1473 1474 1475
                       " inputs and outputs order. It might not work well."
                       "Please see follow log carefully.")
    inputs = []
    outputs_ = []
    for each_layer in layers:
        assert isinstance(each_layer, LayerOutput)
        inputs.extend(__dfs_travel__(each_layer))
Q
qijun 已提交
1476 1477 1478
        outputs_.extend(
            __dfs_travel__(each_layer,
                           lambda x: x.layer_type == LayerType.COST))
Z
zhangjinchao01 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

    # Currently, we got each leaf node's inputs order, output order.
    # We merge them together.

    final_inputs = []
    final_outputs = []

    for each_input in inputs:
        assert isinstance(each_input, LayerOutput)
        if each_input.name not in final_inputs:
            final_inputs.append(each_input.name)

    for each_output in outputs_:
        assert isinstance(each_output, LayerOutput)
        if each_output.name not in final_outputs:
            final_outputs.append(each_output.name)

Q
qijun 已提交
1496
    logger.info("".join(["The input order is [", ", ".join(final_inputs), "]"]))
1497 1498 1499 1500

    if len(final_outputs) == 0:
        final_outputs = map(lambda x: x.name, layers)

Q
qijun 已提交
1501 1502
    logger.info("".join(
        ["The output order is [", ", ".join(final_outputs), "]"]))
Z
zhangjinchao01 已提交
1503 1504

    Inputs(*final_inputs)
1505
    Outputs(*final_outputs)