conv_fusion_op.cu 16.1 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <array>
16
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
19 20
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/operators/math/padding.h"
21
#include "paddle/fluid/platform/cudnn_helper.h"
Q
qingqing01 已提交
22

23
DECLARE_int64(cudnn_exhaustive_search_times);
Q
qingqing01 已提交
24 25 26 27

namespace paddle {
namespace operators {

H
hjchen2 已提交
28
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
29 30 31 32 33 34
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;
35
using framework::AlgorithmsCache;
36
using framework::ConvSearchCache;
37

Q
qingqing01 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* residual = ctx.Input<Tensor>("ResidualData");
    auto* output = ctx.Output<Tensor>("Output");
51
    output->mutable_data<T>(ctx.GetPlace());
Q
qingqing01 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    const std::string activation = ctx.Attr<std::string>("activation");
    int groups = ctx.Attr<int>("groups");
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");

    const T* filter_data = filter->data<T>();
    const T* bias_data = bias->data<T>();
65 66 67 68 69 70 71 72

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

    Tensor transformed_input_channel(input->type());
    Tensor transformed_output(output->type());
    transformed_input_channel = *input;
    transformed_output = *output;
73 74
    T* output_data = transformed_output.data<T>();

Q
qingqing01 已提交
75
    const T* residual_data = residual ? residual->data<T>() : output_data;
76

77 78 79
    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
    auto filter_dims = filter->dims();
80 81
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
133 134 135 136
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Operator Conv2DFusion expects Input to be a 4-D or 5-D Tensor. "
              "But recieved the actual dimension = %d, shape = [%s].",
              rank, transformed_input_channel.dims()));
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
      }

    } else {
      transformed_input = transformed_input_channel;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
Q
qingqing01 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedTensorDescriptor bias_desc;
    ScopedConvolutionDescriptor conv_desc;
    ScopedActivationDescriptor act_desc;
    DataLayout layout = DataLayout::kNCHW;
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
167
        conv_desc.descriptor<T>(padding_common, strides, dilations);
168 169
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnSetConvolutionGroupCount(cudnn_conv_desc,
170 171 172 173 174 175 176
                                                         groups),
        platform::errors::External(
            "Call of cudnnSetConvolutionGroupCount(cudnn_conv_desc, groups) "
            "failed, where cudnn_conv_desc is configured: padding = [%s], "
            "strides = [%s], dilations = [%s]; groups = %d",
            framework::make_ddim(padding_common), framework::make_ddim(strides),
            framework::make_ddim(dilations), groups));
Q
qingqing01 已提交
177 178

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
179
        layout, framework::vectorize<int>(transformed_input.dims()));
Q
qingqing01 已提交
180
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
181
        layout, framework::vectorize<int>(transformed_output.dims()));
Q
qingqing01 已提交
182
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
183
        layout, framework::vectorize<int>(filter->dims()));
Q
qingqing01 已提交
184
    // Now only support NCHW
185 186
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
Q
qingqing01 已提交
187 188 189 190 191 192 193
    cudnnTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
194
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
195 196
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
197
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
198 199 200 201 202 203 204
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
    auto handle = dev_ctx.cudnn_handle();
C
chengduo 已提交
205
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
Q
qingqing01 已提交
206

207 208 209 210 211 212 213 214 215
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnSetConvolutionMathType(cudnn_conv_desc,
                                                       CUDNN_DEFAULT_MATH),
        platform::errors::External(
            "Call of cudnnSetConvolutionMathType(cudnn_conv_desc, "
            "CUDNN_DEFAULT_MATH) failed, where cudnn_conv_desc is configured: "
            "padding = %d, strides = %d, dilations = %d.",
            framework::make_ddim(padding_common), framework::make_ddim(strides),
            framework::make_ddim(dilations)));
Q
qingqing01 已提交
216

217
    auto x_dims = framework::vectorize(transformed_input.dims());
Q
qingqing01 已提交
218
    auto f_dims = framework::vectorize(filter->dims());
219
    if (!exhaustive_search) {
220 221 222 223
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
              cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
224 225 226
              workspace_size_limit, &algo),
          platform::errors::External(
              "Call of cudnnGetConvolutionForwardAlgorithm failed."));
Q
qingqing01 已提交
227 228
      VLOG(3) << "cuDNN forward algo " << algo;
    } else {
229 230
      std::function<cudnnConvolutionFwdAlgo_t()> search_func =
          [&]() -> cudnnConvolutionFwdAlgo_t {
Q
qingqing01 已提交
231 232 233
        int returned_algo_count;
        std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
            fwd_perf_stat;
C
chengduo 已提交
234
        auto cudnn_find_func = [&](void* cudnn_workspace) {
235
          PADDLE_ENFORCE_CUDA_SUCCESS(
C
chengduo 已提交
236 237 238 239
              platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                  handle, cudnn_input_desc, input_data, cudnn_filter_desc,
                  filter_data, cudnn_conv_desc, cudnn_output_desc, output_data,
                  kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
240 241 242
                  fwd_perf_stat.data(), cudnn_workspace, workspace_size_limit),
              platform::errors::External(
                  "Call of cudnnFindConvolutionForwardAlgorithmEx failed."));
C
chengduo 已提交
243
        };
244
        workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
Q
qingqing01 已提交
245 246 247 248 249 250 251 252
        VLOG(3) << "Perf result: (algo: stat, time, memory)";
        for (int i = 0; i < returned_algo_count; ++i) {
          const auto& stat = fwd_perf_stat[i];
          VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " "
                  << stat.memory;
        }
        return fwd_perf_stat[0].algo;
      };
253
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
254
          *(framework::ConvSearchCache::Instance().GetConvFusion());
Q
qingqing01 已提交
255 256 257
      int search_times = ctx.Attr<int>("search_times");
      search_times = std::max(
          static_cast<int>(FLAGS_cudnn_exhaustive_search_times), search_times);
258
      // TODO(dangqingqing): Unify this if-else.
Q
qingqing01 已提交
259 260 261 262
      if (search_times > 0) {
        // The searched algo will be cached by `search_times` times for
        // different input dimension. For other dimensions, select the algo
        // of closest area.
263 264
        algo = algo_cache.GetAlgorithm(x_dims[2] * x_dims[3], search_times, 0,
                                       search_func);
Q
qingqing01 已提交
265
      } else {
266
        auto dtype = platform::CudnnDataType<T>::type;
267
        algo = algo_cache.GetAlgorithm(x_dims, f_dims, strides, paddings,
268
                                       dilations, 0, dtype, search_func);
Q
qingqing01 已提交
269 270 271 272
      }
      VLOG(3) << "choose algo " << algo;
    }

273 274 275
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
276 277 278 279 280 281 282 283 284 285
            cudnn_output_desc, algo, &workspace_size_in_bytes),
        platform::errors::External(
            "Call of cudnnGetConvolutionForwardWorkspaceSize failed."));
    PADDLE_ENFORCE_LE(
        workspace_size_in_bytes, workspace_size_limit,
        platform::errors::InvalidArgument(
            "The actual workspace size to be allocated for cuDNN is expected "
            "to be less than the limit. But recieved: the actual workspace "
            "size = %d, limit = %d.",
            workspace_size_in_bytes, workspace_size_limit));
Q
qingqing01 已提交
286

N
nhzlx 已提交
287
    if ((activation == "identity") && (!residual)) {
288 289 290 291 292 293
      // Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
      // enabled with CUDNN_ACTIVATION_IDENTITY in cuDNN lib.
      // But test in some case, the speed is slower, change to use
      // cudnnConvolutionForward and cudnnAddTensor
      // ------------- cudnn conv forward and bias add ---------------------
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduo 已提交
294
      auto cudnn_func = [&](void* cudnn_workspace) {
295 296 297 298 299 300 301
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnConvolutionForward(
                handle, &alpha, cudnn_input_desc, input_data, cudnn_filter_desc,
                filter_data, cudnn_conv_desc, algo, cudnn_workspace,
                workspace_size_in_bytes, &beta, cudnn_output_desc, output_data),
            platform::errors::External(
                "Call of cudnnConvolutionForward failed."));
C
chengduo 已提交
302 303
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
304 305 306 307 308
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnAddTensor(handle, &alpha, cudnn_bias_desc,
                                            bias_data, &alpha,
                                            cudnn_output_desc, output_data),
          platform::errors::External("Call of cudnnAddTensor failed."));
309 310 311 312 313 314 315
    } else {
      if (activation == "identity") {
        algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
      }
      // ------------------- cudnn conv+bias+act forward --------------------
      ScalingParamType<T> alpha1 = 1.0f;
      ScalingParamType<T> alpha2 = residual ? 1.0f : 0.0f;
C
chengduo 已提交
316
      auto cudnn_func = [&](void* cudnn_workspace) {
317 318 319 320 321 322
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnConvolutionBiasActivationForward(
                handle, &alpha1, cudnn_input_desc, input_data,
                cudnn_filter_desc, filter_data, cudnn_conv_desc, algo,
                cudnn_workspace, workspace_size_in_bytes, &alpha2,
                cudnn_output_desc, residual_data, cudnn_bias_desc, bias_data,
323 324 325
                cudnn_act_desc, cudnn_output_desc, output_data),
            platform::errors::External(
                "Call of cudnnConvolutionBiasActivationForward failed."));
C
chengduo 已提交
326 327
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
328
    }
Q
qingqing01 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    std::vector<int> channels = ctx.Attr<std::vector<int>>("split_channels");
    if (channels.size()) {
      auto outs = ctx.MultiOutput<framework::Tensor>("Outputs");
      if (x_dims[0] == 1) {
        // share data with Output
        framework::Tensor t;
        t.ShareDataWith(*output);
        auto y_dims = output->dims();
        t.Resize({y_dims[1], y_dims[2], y_dims[3]});
        int s = 0;
        for (size_t i = 0; i < channels.size(); ++i) {
          int e = s + channels[i];
          outs[i]->ShareDataWith(t.Slice(s, e));
          outs[i]->Resize({x_dims[0], channels[i], y_dims[2], y_dims[3]});
          s = e;
        }
      } else {
        // TODO(qingiqng): do copy when batch size large than 1
347 348 349 350
        PADDLE_THROW(platform::errors::Unimplemented(
            "Input with batch size greater than 1 is unsupported. The recieved "
            "batch size is %d, Input's shape is [%s].",
            x_dims[0], framework::make_ddim(x_dims)));
Q
qingqing01 已提交
351 352
      }
    }
Q
qingqing01 已提交
353 354
  }
};
D
Dang Qingqing 已提交
355
#endif
Q
qingqing01 已提交
356 357 358 359

}  // namespace operators
}  // namespace paddle

H
hjchen2 已提交
360
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
361 362 363
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>,
                        ops::CUDNNConvFusionOpKernel<double>);
D
Dang Qingqing 已提交
364
#endif