adagrad_op.cc 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adagrad_op.h"
16
#include <vector>
17

Q
QI JUN 已提交
18 19
#include <cmath>

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Q
QI JUN 已提交
22

23 24 25
namespace paddle {
namespace operators {

D
dzhwinter 已提交
26
using Tensor = framework::Tensor;
27 28 29 30
class AdagradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

Q
QI JUN 已提交
31
  void InferShape(framework::InferShapeContext* ctx) const override {
K
Kexin Zhao 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(Param) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(Grad) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Moment"),
                   "Input(Moment) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of AdagradOp should not be null.");

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
                   "Output(MomentOut) of AdagradOp should not be null.");

    auto lr_dims = ctx->GetInputDim("LearningRate");
47 48 49 50 51
    PADDLE_ENFORCE_NE(framework::product(lr_dims), 0,
                      "Maybe the Input variable LearningRate has not "
                      "been initialized. You may need to confirm "
                      "if you put exe.run(startup_program) "
                      "after optimizer.minimize function.");
52
    PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
K
Kexin Zhao 已提交
53 54
                      "LearningRate should have one element");
    auto param_dims = ctx->GetInputDim("Param");
55
    PADDLE_ENFORCE_EQ(
K
Kexin Zhao 已提交
56 57
        param_dims, ctx->GetInputDim("Grad"),
        "Param and Grad input of AdagradOp should have the same dimension.");
58
    PADDLE_ENFORCE_EQ(
K
Kexin Zhao 已提交
59 60
        param_dims, ctx->GetInputDim("Moment"),
        "Param and Moment input of AdagradOp should have the same dimension.");
61

K
Kexin Zhao 已提交
62 63
    ctx->SetOutputDim("ParamOut", param_dims);
    ctx->SetOutputDim("MomentOut", param_dims);
64
  }
D
dzhwinter 已提交
65 66
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
67 68
    return framework::OpKernelType(ctx.Input<Tensor>("Param")->type(),
                                   ctx.GetPlace());
D
dzhwinter 已提交
69
  }
70 71 72 73
};

class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
74
  void Make() override {
K
Kexin Zhao 已提交
75 76 77 78 79 80 81 82 83 84 85 86
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("Moment", "(Tensor) Second moment");
    AddInput("LearningRate", "(Tensor) Learning rate");

    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("MomentOut", "(Tensor) Output second moment");

    AddAttr<float>("epsilon",
                   "(float, default 1.0e-6) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-6f);
87 88 89 90
    AddComment(R"DOC(

Adaptive Gradient Algorithm (Adagrad).

91 92
The update is done as follows:

93 94
$$moment\_out = moment + grad * grad \\
param\_out = param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}
95
$$
96 97

The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
98 99 100
does not have the epsilon attribute. It is added here in our implementation
as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
for numerical stability to avoid the division by zero error.
101 102 103 104

)DOC");
  }
};
Q
QI JUN 已提交
105 106 107 108 109 110 111 112

namespace {
size_t FindPos(const std::vector<int64_t>& rows, int64_t value) {
  return std::find(rows.begin(), rows.end(), value) - rows.begin();
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
113 114
struct SparseAdagradFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
115 116 117 118 119
                  const framework::SelectedRows& grad,
                  const framework::Tensor& learning_rate, T epsilon,
                  framework::Tensor* moment, framework::Tensor* param) {
    // 1. g_m.rows = set(g.rows)
    auto grad_width = grad.value().dims()[1];
T
wip  
typhoonzero 已提交
120 121 122 123
    math::scatter::MergeAdd<platform::CPUDeviceContext, T> merge_func;
    auto grad_merge = merge_func(context, grad);
    auto& merge_rows = grad_merge.rows();
    auto* grad_merge_data = grad_merge.mutable_value()->template data<T>();
Q
QI JUN 已提交
124 125

    // 2. m += g_m * g_m
S
sneaxiy 已提交
126 127
    auto grad_square =
        SquareSelectedRows<platform::CPUDeviceContext, T>(context, grad_merge);
Q
QI JUN 已提交
128

Q
QI JUN 已提交
129
    math::SelectedRowsAddToTensor<platform::CPUDeviceContext, T> functor;
T
wip  
typhoonzero 已提交
130
    functor(context, grad_square, moment);
Q
QI JUN 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

    // 3. update parameter
    auto* lr = learning_rate.data<T>();
    auto* param_data = param->data<T>();
    auto* moment_data = moment->data<T>();

    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (int64_t j = 0; j < grad_width; j++) {
        param_data[merge_rows[i] * grad_width + j] -=
            lr[0] * grad_merge_data[i * grad_width + j] /
            (std::sqrt(moment_data[merge_rows[i] * grad_width + j]) + epsilon);
      }
    }
  }
};

Q
QI JUN 已提交
147 148
template struct SparseAdagradFunctor<platform::CPUDeviceContext, float>;
template struct SparseAdagradFunctor<platform::CPUDeviceContext, double>;
149 150 151 152 153
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adagrad, ops::AdagradOp, ops::AdagradOpMaker);
Q
QI JUN 已提交
154
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
155 156
    adagrad, ops::AdagradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdagradOpKernel<paddle::platform::CPUDeviceContext, double>);